PLANO NACIONAL DE ENERGIA ELÉTRICA $1987 / 2010$

PLANO 2010

RELATÓRIO EXECUTIUO

MINISTÉRIO DAS MINAS E ENERGIA -- MME CENTRAIS ELÉTRICAS BRASILEIRAS S.A. - ELETROBRÁS Rio de Janeiro, dezembro de 1987

PLANO NACIONAL DE ENERGIA ELÉTRICA $1987 / 2010$ PLANO 2016

```
MINISTERIO DAS MINAS E ENERGIA - MME
Ministrou Antonio Aureliano Chaves de Mendonga
COMISSAOO NACTONAL DE ENERGIA - CNE
Sub-Secretario Executivo: Lourival do Carmo Mônaco
DEPARTAMENTO NACTONAL DE AGUAS E ENERGIA ELETRICA -- DNAEE
Diretor Geral: Getulio Lamartine de Paula Fonseca
CENTRAIS ELÉTRICAS BRASILEIRAS S.A. - ELETROBRAS
Presidente: Mário Penna Bhering
Diretor de Planejamento e Engenharia: Antonio Carlos Tatit Holtz
Diretor de Gestão Empresarial: Carlos Alberto Padua Amarante
Diretor de Operacáo de Sistemas: José Marcondes Brito de Carvalho
Diretor de Coordenacäo: Marcos José Marques
Diretor Econômico-Financeiro: Paslo Procopiak de Aguiar
COMPANHIA AUXILIAR DE EMPRESAS ELÉTRTCAS BRASTLEIRAS -- CAEEB
Presidente: Luiz Gonzaga de Souza Fagundes
EMPRESAS NUCIEEARES BRASTLETRAS S.A. -- NUCLEBRA'S
Presidente: Licínio Marcelo Seabra
```


COORDENACAO DO PLANO 2010

Coordenador: Antônio Carlos Tatit Holtz
Coordenador Adjunto: José Luiz Alquéres

Coordenadores dos trabalhos em cada área da ELETROBRÁS:

```
Arnaud Ismael Lafonte - DCO
Carlos Alberto de Padua Amarante -- DGE
Frederico Birchal Magalhäes Gomes -- DPE
Tzaltino Camozzato -- Secretário Executivo do GCPS
Leo Kameyama - DOS
Luiz Eyer de Araújo - DEF
```

Comite Diretor do Grupo Coordenador de Planejamento dos Sistemas Eletricos - GCPS

Airton Farias Vargas

- ENERSUL

Antonio Carlos Tatit Holtz

- ELETROBRAS

Antonio Fernando Malheiros

- ELETROACRE

Antônio Joáo Dourado

- CELPE

Arlindo Gongalves Araújo

- CPFL

Edmis Cordeiro de Mello

- CER

Fabiano Alves Cossich

- CEMIG

Fábio Ramos

- DNAEE

Fernando Antônio C. de Pinho
Fernando Franco de Sá Bonfim
Fernando Hugo da Silva

- CELPA
- CEAM

Filemon Tavares
-- COELCE

Tsamu Okada
José Coriolano Beraldo

- ESCEISA
- CEMAT

José da Silva Ribeiro Neto

- CERJ

José Francisco das Neves
-- ENERGIPE

José Milton F. de Almeida

- CELG
- COELBA
- CEPISA

Léércio M. de Anorim Monteiro

- CEAL

Luiz de Moraes Guerra Filho

- CHESF

Luiz Teixeira Alves de Lima

- LTGHT

Manoel Firmino de Medeiros Jr.
Miguel Rodrigues Nunes
Oswaldo Baumgarten

- COSERN
- ELETRONORTE

Paulo Fernando V. do Amaral

- CEEE
- FURNAS

Padlo Melro
Reynaldo Maffei

- ELETROSUL

Romildo Onaldo Favalli

- ELETROPAULO

Gebastiâo Hulse
-- CESP
-. CELESSC
Sérgio Cerqueira Barcellos
Silas Rondeau C. Silva

- CEA
- cemar

Sinildo Hermes Neidert - Copel
Sudenil Soares da Silva - SAELPA
Uinicius F_{n} de Sá e Benevides
-- CEB
Walfredo Henrique M. Lessa

- CERON

PLANO NACIONAL DE ENERGIA ELÉETRICA $1987 / 2010$ PLANO 2010

indICE
in_-_INIRQUUCEZO

2._-_DEGANDA_DE_ENERGIA_ELÉIBICA

2.1 Comportamento do mercado no período 1970/1985
2.2 Previsão do mercado de energia elétrica
2.2.1 Premissas básicas
2.2.2 Apresentacáo e análise das previsôes
2.2.3 Conservacão de energia elétrica
3._-_EQNIES_RARA_A_GERACZZO_DE_ENERGIA_ELÉTRICA
3.1 Energiahidrelétrica
3.1.1 Perspectivas do aproveitamento da energia hidrelétrica
3.i.2 O aproveitamento do potencial hidrelétrico da Amazônia
3.2 Carvão mineral
3.2.1 Potencial de geracão
3.2.2 Custos de geracão
3.2.3 Política de desenvolvimento da utilizafão do carvão mineral
3.3 Energia Nuclear
3.3.1 Potencial de geracão
3.3.2 Custos futuros da energia nuclear no Brasil
3.3.3 Ritmo do Programa Nuclear Brasileiro
4._-_GEIQ_AGBIENIE_E_INSERCOZQ_BEGIQNAL_DQS_EMRREENDIMENIQS
5._-_EXRANSKZ_AQ_LQNGQ_RRAZQ_DQ_SISIEMA_ELÉTRICQ
5.1 Expansão do sistema de geraçio
5.i.1 Inundacão de terras pelos reservatórios de hidrelétricas
5.i.2 A questão da complementacão térmica
5.1.3 Alternativas ao aproveitamento do potencial hidrelétrico da Amazônia
5.2 Expansão do sistema de transmissão

6.1 Programa de expansão da geração
G.i.i Sistema interligado Sudeste/Centro Deste/Sul
6.i.2 Sistema interligado Norte/Nordeste
6.i.3 Sistemas eletricamente isolados
6.2 Programa de expansão do sistema de transmissão e distribuirão

Z._-_EEBSPECIIVAS_ECQNâMICQ-EINANCEIRAS

7.1	Alguns conceitos básicos
7.2	Evolucão econômico-financeira do Setor Elétrico
7.3	O Plano de Recuperacão Setorial (PRS)
7.4	Perspectivas para o período $1987 / 1996$
7.4 .1	Programa de investimentos
7.4 .2	Evolucão econômico-financeira

7.5 Conclusôes
8.__ESIURQS_INSIIIUCIONAS

8.1	Condicionantes da revisão institucional
8.2 Metodologia de trabalho	

2ュ_-A_ENGENHARIAュ_A_INDUSIRIA_E_A_RESSUISA_IECNQLÓGICE
9.i A indústria de equipamentos utilizados pelo Setor Elétrico
9.1.1 Caracterização da indústria nacional
9.1.2 Centrais hidrelétricas
9.1.3 Centrais termelétricas a carvão
9.1:4 Centrais nucleares
9.1.5 Outros tipos de centrais
9.1.6 Subestacôes
9.1.7 Linhas de transmissão
9.1.8 Redes de distribuifão
9.1.9 Equipamentos de telecomunicaão
9.1.10 Instrumentafão e informática industrial
9.i.if Algumas diretrizes de acão relativas ao setor industrial
9.2 Servicos de engenharia, construfão e montagem
9.2.i Empresas de consultoria e engenharia
9.2.2 Empresas de construcão e montagem
9.3 Diretrizes para a área de pesquisa e desenvolvimento
9.3.1 Planejamento da expansão e da operăão de sistemas elétricos
9.3 .2

Automacão e instrumentafão para sistemas elétricos
9.3.3 Transmissão de energia elétrica
9.3.4 Gerafão de energia elétrica
9.3.5 Conservacão de energia elétrica
9.3.6 Novas tecnologias
9.4 Normalizacão, controle da qualidade e certificacão
9.4.1 Normaliząão
9.4.2 Controle de qualidade
9.4.3 Certificacão
9.5 Participafão do Setor Elétrico no relacionamento internacional
10.1 Abordagem integrada dos estudos energéticos
10.2 Conservafão de energia
10.3 Inserqũo regional dos empreendimentos
10.4 0 programa hidrelétrico e a questão do meio ambiente
10.5 A transmissão a longa distância
10.6 O programa termelétrico
10.7 Capacitacão industrial
10.8 Pesquisa e desenvolvimento
10.9 Expansão do atendimento social
10.10 Treinamento e capacitąão de recursos humanos
10.11 Estudos institucionais
10.12 Viabilidade econômico-financeira
10.13 Programas de expansão
anexos

1. Participantes da elaboracão do Plano
2. Relăão de tabelas efiguras
3. Relafão de siglas

MARAS

1. Principais usinas existentes eprogramadas até 2001
2. Principais troncos de transmissão até 1996

0 Plano Nacional de Energia Elétrica 1987-2010, denominado Plano 2010, é o instrumento de planejamento a longo prazo do Setor Elétrico, elaborado sob a coordenacío da Eletrobrás.

O objetivo fundamental do planejamento a longo prazo consiste emp tracando trajetórias de referências para a evolucão do Setor Elétrico, evidenciar as principais opfôes que se apresentam aos agentes envolvidos e motivar a oportuna tomada de decisóes, com o necessário grau de reflexão e avaliăão técnica.

A complexidade crescente do planejamento do Setor Elétrico, decorrente da sua expressão econômica e de seu envolvimento com outros setores da economia, implicam, ademais, que a elaboracão do Plano 2010 contemple os seguintes objetivos principais:

- analisar o papel da energia elétrica em cenários alternativos da evolugão da economia brasileira;
- prever as necessárias acões sobre a formacão da demanda, ampliando o escopo do planejamento tradicional;
-- formular programas e análises que permitam o estabelecimento do plano de expansẫo das instalacôes de suprimento, detalhando, em particular, o parque gerador e as grandes interligacôes, e balizando os investimentos em transmissão, distribuifão, eletrificacão rural e instalacöes gerais:
- estabelecer, através do entendimento com setores conexos, programas de referência para instalacôes de geragão de origem nuclear, carvão, bagaco de cana, derivados de petróleo, biomassa florestale outros energéticos;
- consolidar, na forma de umplano diretor, as acöes relativas à preservacão do meio ambiente e à inserqão regional dos empreendimentos, definindo recursos e meios para sua efetivafão;
- relacionar as providências necessárias - detalhando quando possível os recursos - para execucaio das pesquisas, estudos e projetos de natureza técnica, econâmica ou social, necessários para promover um melhor conhecimento dos fatores que influenciaráo as futuras revisóes desse plano:
- analisar os aspectos econômicos e financeiros associados ao financiamento dos programas de expansão;
- identificar as principais condicionantes dos processos de revisão institucional e reformulacão organizacional das estruturas do Setor (entidades governamentais, empresas concessionárias, legislacãoo);
- determinar as medidas necessárias para promover a adequacão do parque produtor de equipamentos para suprimento ou consumo de energia elétrica;
- diagnosticar a capacitacão nacional na área de estudos, projetos de engenharia, fornecimento de servifos de construgão e montagem;
-- estabelecer diretrizes para a politica de pesquisa e desenvolvimento do Setor Elétrico;
- identificar as acões associadas ao relacionamento internacional da Eletrobrás e do Setor Elétrico.

O Setor Elétrico, tradicionalmente, realiza o seu planejamento em três horizontes temporais:

- Longo prazo (20 a 30 anos) - onde são abordadas as principais questóes estratégicas do Setor, inclusive as ligadas ao seu relacionamento com outros setores energéticos, com o meio social e com o desenvolvimento tecnológico do Pais:
- Médio prazo (10 a 15 anos) - onde são definidos, compredominância do aspecto físico, os programas de obras das empresas estaduais e regionais no âmbito do GCPS - Grupo Coordenador do Planejamento dos Sistemas Elétricos, do qual participam as principais empresas federais e estaduais;
- Curto prazo - onde são detalhados os primeiros 10 anos dos programas de obra, definindo-se, para os primeiros 5 anos, os orcamentos plurianuais de investimento e o equacionamento das fontes de recursos financeiros.

Normalmente, oplanejamento a curto prazo é revisto a cada ano. O de médio prazo tem sido objeto de revisôes mais profundas a cada 2 ou 3 anos. embora seja também anualmente ajustado. O planejamento a longo prazo é revisto, em média, a cada 5 anos.

O planejamento a curto prazo, cujos resultados são apresentados no PRS - Plano de Recuperagão do Setor Elétrico, não faz parte do Plano 20io, diante da dinâmica de sua atualização.

- Plano 2010 apresenta uma abordagem qualitativamente diferente do processo tradicional de planejamento. Assim, o Plano não é o somatório de uma série de estudos "ad hoc", mas parte do princípio de que a atividade de planejamento se efetua em caráter contínuo no âmbito da Eletrobrás e das empresas, e se propốe a apresentar a visão a longo prazo do Setor, segundo o melhor conhecimento disponivel quando de sua elaboracão.

Como instrumento de longo prazo, o Plano 2010 se volta à análise e investigacão de possiveis cenários de desenvolvimento, procurando privilegiar, nas suas recomendafôes, aqueles aspectos conceituais e estratégicos, vitais para a correta orientąão do desenvolvimento do Setor Elétrico.

Atualizacôes em programas de obra, previsão de mercado e projefões financeiras, e adequacão de programas a recursos escassos sấo atividades que, anualmente, serão exigidas e executadas no escopo dos planos a médio ou curto prazos. Todavia, sem um correto direcionamento, os resultados dos ciclos anuais de planejamento ficariam comprometidos.

Ao trafar os balizamentos essenciais para a evolufão do Setor, caracterizando suas formas de integracão com o planejamento energético mais global; ao buscar a conciliacio dos objetivos setoriais com aqueles mais amplos da sociedade; ao investigar os possiveis contornos do quadro de suprimento a longo prazo, evidenciando o papel das diferentes fontes de energia e contribuifão das diferentes regiôes; ao caracterizar o sentido social que deve presidir a expansão dos sistemas elétricos, ao lado de realgar o papel do Setor no
desenvolvimento científico, tecnológico, industrial e institucional; o Plano 2010 se assenta basicamente sobre dois princípios: respeito a criterios de planejamento aceitos por todas as empresas e proposicôes suficientemente flexiveis para se ajustarem às contingências de ordem econômica, financeira, empresarial, ambiental, etc., que fatalmente acontecerão no decorrer do tempo.

Na correta adocão desse rumo reside a causa primeira da eficiência do Setor, propiciando que as decisóes sejam tomadas no monento necessário à luz de um conjunto de estudos que caracterizem, para os amplos segmentos hoje envolvidos na tomada de decisão, os fatores relevantes a serem considerados.

- Plano 2010 é também um documento que traduz a transparência do Setor Elétrico, para a análise de todos os agentes envolvidos direta ou indiretamente nos seus projetose da sociedade como um todo. Seu acesso público contribuirá decisivamente para a melhoria do conteúdo do debate sobre as relacôes da energia elétrica com o desenvolvimento econômico e social, e de ambos com o meio ambiente.

Da elaborafão do Plano 2010, participaram, sob orientagão superior do Sr. Ministro das Minas e Energia e coordenafão da Eletrobrás, todos os órgãos ministeriais da área energética, todas as empresas concessionárias de energia elétrica e inúmeras entidades públicase privadas, nacionais e internacionais.

Procurando, ainda, atender aos objetivos de elaborar um Plano de forma aberta à participagão mais ampla de várias entidades envolvidas com a problemática do Setor Elétrico, foram promovidos inúmeros seminários temáticos abordando temas importantes nas áreas econômica, energética, de mercado, de meio ambiente, de gerafão, de transmissão, de engenharia, de projeto, de construfão, de gerenciamento, etc.

Com o mesmo objetivo, foi emitida uma primeira versão do plano, amplamente divulgada e debatida entre as entidades envolvidas na sua elaboracão. Desta forma, foi possivel incorporar inúmeras criticas e sugestöes à versão definitiva.

- Setor Elétrico está convocado para, através de esforco conjunto, viabilizar, por sua afão coordenada, a implantacão das recomendacốes e programas aqui caracterizados ou delineados, de forma a permitir que a atual eas próximas geracóes tenham assegurada a energia elétrica necessária a um futuro melhor. Mas é também imprescindivel a adesão dos diversos órgãos do Governo para que as recomendacöes aqui apresentadas possam realmente ser implementadas.

Os resultados do Plano 2010 foram apresentados
no documento denominado Relatório Geral, que já se encontra publicado. Diante da sua abrangencia, elaborou-se este documento sintético, denominado Relatório Executivo, contendo apenas os aspectos mais relevantes do Plano, prevendo-se sua ampla divulgagão.

2.1 Comportamento do mercado no período 1970/ 1985

No periodo 1970/85, o consumo total de energia elétrica no Brasil (inclusive a parcela referente aos autoprodutores) apresentou uma taxa geométrica média anual de crescimento de $10,6 \%$. No mesmo período, estas taxas foram de $5,9 \%$ para o consumo total de energia e de $6,3 \%$ para o PIB, resultando en um grande crescimento da participacáo da eletricidade no consumo final energético, que passou de 19% em 1970 para 37% em 1985 (vide tabela 2.i-1).

Na mesma tabela, é mostrada a evolucão da elasticidade-renda do consumo de eletricidade no Brasil, de 1971 a 1985. Note-se que, até 1975, seu comportamento mostra-se estável, com valores pouco superiores à unidade. A partir desta data, a elasticidade passa a apresentar um comportamento errático, assumindo valores elevados quando o crescimeto do PIB é positivo e se tornando negativa, quando este cai. Será necessário analisar este comportamento aparentemente anômalo, que muitas dificuldades têm trazido às projeqôes do mercado de energia elétrica.

Assinale-se, inicialmente, a tendencia à intensificacão do uso da eletricidade observada no passado recente das sociedades industriais, o que tem mantido a elasticidaderrenda do consumo da eletricidade em niveis superiores à elasticidade-renda do consumo total de energia.

Na indústria, o progresso da eletrificafão produziu-se não só pelo crescimento da producão de materiais altamente consumidores de eletricidade, como o alumínio e ocloro, mas também pela introdugão de tecnologias intensivas em eletricidade nas industrias em geral. Em especial, o uso da eletricidade esta associado a crescente sofisticafấo industrial, pois ela é por essencia o vetor energético quando se quer produtos e materiais de alta qualidade, como se observa, por exemplo, na eletro-metalurgia.

Nas residênciase no setor de servigos, a tendencia é igualmente favorável à eletricidade. Nos ultimos anos, observou-se uma forte difusão dos eletro-domésticos e o crescimento do consumo de eletricidade a estes associado.

Se nos países desenvolvidos observa-se uma tendência à saturafão dos fatores acima descritos, no Erasil, eles ainda estão presentes, pois é um País que ainda completa o seu processo de industrializafão e onde se observou um rápido crescimento da urbaniza̧ão nos últimos anos. associado à incorporafão crescente de novos consumidores residenciais e comerciais, pela extensão das redes de distribuifão.

Os fatores de ordem estrutural até agora examinados nã̃o são suficientes para explicar a brutal expansão do consumo de eletricidade observada nos últimos anos, no Brasil. A eles se somam razöes conjunturais que seraío analisadas a seguir.

No período em estudo, observou-se um violento aumento dos preqos dos derivados de petróleo e um decréscimo nos precos da eletricidade, o que incentivou não só a substituigão daqueles por esta, mas também o uso perdulário da eletricidade. Nos ultimos anos, esta tendencia foi extremamente reforcada pelo aparecimento das tarifas especiais. Estabelecidas com valores até cinco vezes menores que os niveis tari-
fários normais, elas visavam incentivar a substituicão dos derivados de petróleo e as exportacôes, o que, mesmo sem outros fatores adicionais, seria um motivo para grande aumento no consumo de eletricidade. O consumo total destas tarifas foi de 0,7 TWh em 1982 e 12 TWh em 1985, o que representou 7% do consumo total deste ano. Se este consumo fosse retirado do mercado, a taxa anual de crescimento entre 1982 e 1985 cairia de 10.0% para $7,2 \%$.

A maturacão de grandes projetos de produrão de insumos básicos intensivos em energia elétrica, como alumínio e aco, e sua participacão crescente nas exportacôes brasileiras também contribuiram para manter a demanda aquecida, pois, de importador, o Pais passou a ser grande exportador destes produtos. A eletricidade direta e indiretamente utilizada nos bens exportados pelo Brasil cresceu de 5,8 TWh em 1975 para 24,1 TWh em 1984, que representam $8,6 \%$ e $15,3 \%$ do total de energia elétrica utilizada pelo país nestes anos. Se, em 1975, para exportar 1000 dólares eram necessários 675 kWh , em 1984, este número passou para 896 kWh .

TABELA 2.1-1
BRASiL
CONSUMO TOTAL DE ENERGIA ELÉTRICA ENERGIA E PRODUTO INTERNO BRUTO (PIB) 1970/85

ANO	CONSUMO DE ENERGIA ELETRICA (TWh) (*)	CRESCIMENTO ANUAL (\% a.a.)	CONSUMO DE ENERGIA (10^{6} TEp) (*)	CRESCIMENTO ANUAL (\% a.a.)	$\begin{aligned} & 0 \quad \text { PIB } \\ & \text { [10 } 0^{\circ} \text { US\$ (85)] } \end{aligned}$	CRESCIMENTO ANUAL (\% a.a.):	ELASTICIDADE-RENDA		PARTICIPACAOO DA ENERGIA ELÉTRICA NO CONSUMO ENERGÉTICO (\%)
							ENERGIA	ENERGIA ELÉTRICA	
1970	38.0	$\dot{1}$	57.2		90,6	1		-	19,4
1971	42,8	12,6	62,6	9,4	100,8	11,3	0,83	1,11	20,0
1972	47,9	11,8	68,3	9,1	113,0	12,1	0,75	0,97	20,5
1973	54,8	14,5	75,3	10,3	128,9	14.0	0,73	1,03	21,2
1974	61,5	12,9	81,5	8,2	140,5	9.0	0,91	1,43	22,0
1975	67,9	10,5	86,5	6.1	147,8	5,2	1,17	2,02	22,9
1976	77.2	13,7	94,7	9,4	162,3	9,8	0,96	1,40	23,8
1977	86,9	12.5	99,8	5,5	169,8	4,6	1,19	2.72	25.4
1978	96,8	11,4	106,6	6,8	177,9	4,8	1,42	2,37	26,5
1979	109,2	12,8	113,6	6,6	190,7	7,2	0.92	1,78	28,1
1980	120.3	10,2	118,4	4,1	2081	9.1	0,45	1,12	29.7
1981	123,7	2,8	114,6	-3,1	201,2	-3,3	0,94	$-0,85$	31,5
1982	131,5	6,3	118,4	3,3	203,0	0,9	3,67	7,00	32,4
1983	140,4	6,8	122,4	3,3	197,9	-2,5	-1,32	-2,72	33,5
1984	157,2	11,9	130,0	6,2	209,2	5.7	1,09	2.09	35,3
1985	172,3	9,6	135,9	4,6	226,6	8,3	0,55	1,16	37,0

(*) Inclusive Autoprodutores.

2.2 Previsão do mercado de energia elétrica

As previsôes do mercado de energia elétrica para o período 1986/2010 foram elaboradas pelas concessionárias participantes do GTPM, pertencentes ao GCPS. Até 1989, os valores são basicamente os aprovados pelo Comam do GCOI para o mercado de curto prazo.

2.2.1 Prenissas básicas

A previsão do mercado é fortemente condicionada pelo desempenho global da economia e pela composifão qualitativa dos indicadores demográficos e sociais, tornando-se, portanto, essencial dispor-se de variáveis que expressem estas condicôes.

Cabe ressaltar que o uso das variáveis macroeconômicas está condicionado ao horizonte de aplicafão. A curto prazo, o impacto da entrada de novas cargas de grande porte e de programas de expansão nas redes de distribuifáo influência decisivamente a evolugão do mercado.

A longo prazo, a única referencia disponivel no atual estágio das aplicafões metodológicas é o crescimento dos grandes agregados macroeconômicos edemográficos, embora se saiba que, a partir da implementacão de políticas de conservacão de energia, atualmente em desenvolvimento, os estudos de previsão deverão ser por elas influenciados.

- I PND-NR fixou como meta um crescimento do País a taxas de 6% ao ano, a partir de 1986. Depois o Plano de Metas alterou estas taxas, estabelecendo um crescimento médio anual de 6,8\% entre 1986 e 1990 , que corresponde aproximadamente à média histórica observada na economia brasileira desde o pós-guerra.

Partindo-se das premissas do Plano de Metas, estimou-se o crescimento do PIB a longo prazo, coerente com as modificacóes estruturais no periodo 1986/90, resultando nos valores mostrados na tabela 2.2.i-i.

Após a edicĩo da versão preliminar do Plano 20i0, o governo publicou, em julho de i987, o Plano de Controle Macroeconômico, que ratifica os objetivos do I PND-NR, principalmente aqueles relacionados com a opaáo pela retomada do crescimento econômico, com enfase no social via distribuigão mais equilibrada da renda.

Este novo plano não altera fundamentalmente as taxas de crescimento anual do PIB do Plano de Metas, prevendo $5 \% \mathrm{em} 1987,6 \%$ em 1988 e 7% de 1989 a 1991. Desta forma, julgou-se desnecessário a alteracão das premissas econoficas aqui adotadas.
2.2.2 Apresentafõo e análise das previsões

A tabela 2.2.2-i apresenta previsão, para o total do País, do mercado de energia elétrica atendido pelas concessionarias e pelos autoprodutores industriais. A desagregacão da parcela do mercado atendida pelas concessionárias, por regiôes e classes de consumo, é apresentada nas tabelas 2.2.2-2 e 2.2.2-3.

All	AUTO- Proutores (TTH)	concessioNGRIAS (THM)	TOTAL (Т世)	TAXAS GEOHELTRICAS MÉDIAS AMAIS (2 a, a.)
1986	9,9	175,7	185,6	-
1987	10,1	185,7	195,8	5,5
1988	10,2	20i,5	211,7	8,1
1989	11,3	217,6	227,9	7,6
1990	10,5	233,9	24,4	7,2
1995	10,7	321,1	331,7	6,3
2000	11,	424,7	431,7	5,4
2005	11,3	539,1	550,4	5,0
2010	11,3	668,8	680,1	4,3

A natureza aleatória das variáveis que determinam o comportamento do mercado de energia elétrica torna sua previsão sujeita a grandes in. certezas, que crescem com o aumento dos horizontes em estudo, e podem se tornar muito grandes, mesmo no curto prazo, se variáveis importantes conjunturalmente apresentarem comportamento que dificulte a sua previsão, como acontece hoje diante das dificuldades atuais da economia brasileira. As observacőes que serão feitas a seguir não tem por objetivo apontar falhas nas projegões, e sim caracterizar o ambiente de grandes dificuldades em que foram realiaadas, procurando determinar os fatores que poderiam

> TABELA 2.2.1-1
> BRASIL
> PREMISSAS ECONÔMICAS E DEMOGRAFICAS
> $1985 / 2010$

ANO	PIB POPULACAZO TOTAL PIB		
	[109 US\$(85)]	(103 hab.)	PER CAPITA (US\$/hab.)
1985	226,6	135.564	1.672
1.990	314,9	150.368	2.094
1995	423,4	165.083	2.565
2000	561,3	179.487	3.127
2005	730.1	193.603	3.771
2010	918,6	207.454	4.428

TAXAS GEOMÉTRICAS MÉDIAS ANUAIS (\% a.a.)

		POPULACAO	PIB	
PERIODO	PIB	6,8	TOTAL	PER CAPITA
$1985 / 90$	6,1	2,1	4,6	
$1990 / 95$	5,8	1,9	4,1	
$1995 / 00$	5,4	1,7	4,0	
$2000 / 05$	4,7	1,5	3,8	
$2005 / 10$	5,8	1,4	3,3	
$1985 / 10$				4,7

TABELA 2.2.2-2
BRASIL
PREUISÅO DO CONSUMO TOTAL DE ENERGIA ELÉTRICA (*) 1986/2010 (TWh)

REGIAO	1986	1990	1995	2000	2005	2010
Norte + MA	9,2	19,4	28,4	36,7	52,4	65,0
Nordeste - MA	23,2	30,5	45,3	63,5	83,1	106,6
Sudeste + C.0este - MS	119,2	149,4	197,2	249,4	308,7	375,6
Sul + MS	24,1	34,6	50,1	71,1	94,9	121,6
Brasil	175,7	233,9	321,0	420,7	539,1	668,8

TAXAS GEOMÉTRICAS MÉDIAS ANUAIS (\% a.a.)

REGIAO	$\begin{aligned} & 1990 / \\ & 1986 \end{aligned}$	$\begin{aligned} & 1995 / \\ & 1990 \end{aligned}$	$\begin{aligned} & 20001 \\ & 1995 \end{aligned}$	$\begin{aligned} & 2005 / \\ & 2000 \end{aligned}$	$\begin{aligned} & 2010 / \\ & 2005 \end{aligned}$
Norte + MA	20.5	7.9	5,3	7,4	4,4
Nordeste - MA	7.1	8,2	7,0	5.5	5,1
Sudeste + C.Oeste - MS	5,8	5,7	4,8	4,4	4,0
Sul + MS	9,5	7.7	7,2	5.9	4,6
Brasil	7,4	6,5	5,6	5,1	4,4

EVOLUCAZO DA PARTICIPACZO
(\%)

REGIAO	1986	1990	1995	2000	2005	2010
Norte + MA	5,3	8,3	8.9	8,7	9.7	9,7
Nordeste - MA	13,2	13,0	14.1	15,1	15,4	15,9
Sudeste + C.Oeste - MS	67,8	63,9	61,4	59,3	57,3	56,2
$S ⿺ 𠃊+M S$	13,7	14,8	15.6	16,9	1.7,6	18,2
Brasil	100.0	100,0	100.0	100,0	100.0	100.0

(*) Exclusive Autoprodutores.

```
TABELA 2.2.2-3
BRASIL
PREUISÅO DO CONSUMO DE ENERGIA ELÉTRICA POR CLASSE DE CONSUMO (*) 1986/2010 (TWh)
```

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CLASSE DE CONSUMO | 1986 | 1990 | 1995 | 2000 | 2005 | 2010 |
| Industrial | 98,4 | 131,1 | 181,7 | 238,9 | 308,3 | 384,5 |
| Residencial | 35,1 | 45,6 | 62,7 | 82,3 | 105,1 | 129,9 |
| Outros | 42,2 | 57,2 | 76,6 | 99,5 | 125,7 | 154,4 |
| Total | 175,7 | 233,9 | 321,0 | 420,7 | 539,1 | 668,8 |

TAXAS GEOMÉTRICAS MÉDIAS ANUAIS
(\% a.a.)

| | $1990 /$ | $1995 /$ | $2000 /$ | $2005 /$ | $2010 /$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CLASSE DE CONSUMO | 1986 | 1990 | 1995 | 2000 | 2005 |
| Industrial | 7,4 | 6,7 | 5,7 | 5,2 | 4,5 |
| Residencial | 6,8 | 6,5 | 5,7 | 5,0 | 4,3 |
| Outros | 7,9 | 6,0 | 5,4 | 4,8 | 4,2 |
| Total | 7,4 | 6,5 | 5,6 | 5,1 | 4,4 |

EVOLUCÃO DA PARTICIPACZ̃O
(\%)

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CLASSE DE CONSUMO | 1986 | 1990 | 1995 | 2000 | 2005 | 2010 |
| Industrial | 56,0 | 56,0 | 56,6 | 56,8 | 57,2 | 57,5 |
| Residencial | 20,0 | 19,5 | 19,5 | 19,6 | 19,5 | 19,4 |
| Outros | 24,0 | 24,5 | 23,9 | 23,6 | 23,3 | 23,1 |
| Total | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 |

(*) Exclusive Autoprodutores.
provocar desvios consideráveis nas atuais expectativas.
Na tabela 2.2.2-4, é apresentada a evolufão da elasticidade-renda do consumo de eletricidade, para o período histórico recente e para o projetado (1975/2010). Por ela, pode-se observar que, até 1990, os fatores que provocaram o grande aumento desta elasticidade no período de 1975 a 1985 , desapareceraio, e ela passará a assumir valores pouco inferiores ao observado no inicio dos anos setenta. Esta queda pode ser atribuída a uma maior maturafão da economia brasileira, a diminuigö́es de consumo resultantes dos aumentos tarifários previstose ao estabelecimento de politicas de conservąão de energia, que serão analisadas no item 2.2.3.

TABELA 2.2.2-4
BRASIL
ELASTICIDADE-RENOA DO COHSLMO TOTAL
DE EMERGIA ELĖTRICA (*)
1974/2014

PERíODO	TAXAS GEOMÉTRICAS hedias amais (\% a.a.)		ELASTICIDADE
	EIIERGIA ELétrica	PIB	
1970/75	12,3	10,3	1,19
1975/89	12,1	7,1	1,70
1980/85	7,4	1,7	4,35
1985/96	7,3	6,8	1,07
199/95	6,3	6,1	1,03
1995/08	5,4	5,8	0,93
2008/05	5,0	5,4	0,93
2005/19	4,3	4,7	0,91

(*) Inclusive Autoprodutores.
Após 1990, estima-se que o progressivo declínio tanto nas taxas de crescimento do PIB como nos valores da elasticidade provocarão forte decréscimo na taxa de crescimento do mercado de energia elétrica, que passará de uma média anual de 7, 3%, entre 1985 a 1990 , para $4,3 \%$, entre 2005 e 2010.

Prevê-se que as taxas de crescimento do PIB não mais atingirão a média observada desde o pós-guerra, de cerca de 7% ao ano, caindo de 6% para $4,7 \%$, entre 1990 e 2010. Esta expectativa pode não se realizar na medida em que, uma vez superadas as atuais dificuldades por que passa, o País volte a crescer à taxa histórica. Esta é uma hipótese que muitos analistas consideram possivel e mesmo provável.

Sobre a prevista queda da elasticidade, apesar de se considerar que esta é uma tendencia natural, existem dúvidas quanto ao ritmo em que ela se dará. A hipótese adotada pressupôe a ocorrência simultânea de uma perda de peso relativo dos setores industriais intensivos em energia elétrica, uma tendência à saturacão dos consumos residencial e do setor de servifos, e a efetiva implantafão de políticas de conservação de energia.

Se, a longo prazo, os argumentos apresentados tendem a considerar as previsôes como moderadas, a curto prazo, a situacão pode eventualmente se inverter. A realizacáo do crescimento médio anual do PIB de $6,8 \%$
entre 1985 a 1990, apesar desta taxa ter sido de mais de 8%, em 1986, pressupö́e a rápida superafão dos problemas atuais da economia brasileira. Se este processo exigir um periodo de ajuste de vários anos, para os quais as taxas de crescimento da economia serão certamente mais baixas, o mercado de curto prazo se revelará certamente inferior às previsóes, o que poderá ser compensado por um maior crescimento no inicio da próxima década.

A longo prazo, as incertezas, apesar de maiores, apresentam menor gravidade, pois haverá tempo de se proceder às necessárias correcôes nos planos de obras. Entretanto, se for caracterizada uma tendência a un aumento do mercado em relafão ao previsto, dentro de um horizonte que se estende até meados da próxima década, diante da impossibilidade de se promover a antecipacão das obras previstas, será necessária a implantacão de politicas que apresentem resultados a curto prazo, como um incentivo maior à conservagão e à auto-geragão. Naturalmente, serão envidados todos os esforqos para que o Setor Elétrico não se transforme em um obstáculo ao desenvolvimento do País.

As incertezas relacionadas às previsôes de mercado provavelmente se constituem no principal fator que determina a natureza essencialmente dinâmica do planejamento energético. O Setor Elétrico está atento a quaisquer modificafôes consideráveis no comportamento do mercado de energia elétrica, a fim de realizar as modificaföes necessárias nos seus planos. Normalmente, os planos de longo prazo são revistos de cinco em cinco anos, a menos que fatores excepcionais exijam revisöes em prazos mals curtos. Quase certamente, isto ocorrerá nos próximos anos, assim que se tornarem mais claros os rumos futuros da economia brasileira.

2.2.3 Conservăão de energia elétrica

- Programa Nacional de Conservarão de Energia Elétrica - Procel foi criado pela Portaria Interministerial no 1877 de 30 de dezembro de 1985, assinada pelos Ministros de Estado das Minase Energia e da Indústria e do Comércio, com o objetivo de "racionalizar ouso de energia elétricae, como decorrência da maior eficiência, propiciar o mesmo produto ou servico com menor consumo, eliminando desperdiciose assegurando redugão global de custos e de investimentos em novas instalacöes no sistema elétrico".

Para a implementafão do Procel, criou-se pela mesma portaria Interministerial no 1877/85, como órgão de coordenafão, o Grupo Coordenador de Conservąão de Energia Elétrica - GCCE.

Ficou igualmente estabelecido que o GCCE deveria determinar metas físicas de referência a médio e longo prazo do programa.

Transcorrido o primeiro ano de sua criacão, e apesar da falta de informaföes adequadas e de metodologia adaptada ao caso brasileiro, o GCCE, por proposta da sua Secretaria

Executiva, criou e desenvolveu procedimentos

 que resultaram na fixacão de metas físicas de conservacão de energia elétrica, a serem consideradas nos trabalhos de planejamento do Setor de Energia Elétrica. A resolurão GCCE 06/86, publicada no Diário Oficial da União de 19 de dezembro de 1986, consolidou estas metas, que estão resumidas na tabela 2.2.3-1.TABELA 2.2.3-1
BRASIL
METAS DE COMSERUACKO DO PROCEL

ANO	6H1
1999	4.484
1995	16.804
2400	41.397
2005	64.890
2010	88.114

É importante ressaltar que o GCCE, conforme disposto na supramencionada resolucão, promoverá os necessários ajustes das metas à luz dos novos conhecimentos, considerando que parcela substancial da conservacão de energia elétrica depende ainda dos resultados de estudos e avaliafốes em curso. Já estão sendo realizadas análises da economicidade dos programas de conservarão, de tal modo que seus custos sejam comparados con os custos marginais de expansão do sistema.

3._-_EQNIES_RARA__G_GERACZZQ_DE ENERGIA_ELÉTRICA

A tabela 3-1 apresenta as caracteristicas das principais fontes de geracão disponiveis para o atendimento do crescimento do mercado de energia elétrica. Estas fontes sä́o encontradas no pais em diferentes quantidades e com custos extremamente variáveis, como pode ser observado na tabela $3-2$, que foi elaborado de acordo con as seguintes hipoteses:
-- para o carvão e a energia nuclear, os valores representam a energia passível de ser gerada anualmente durante 25 anos de vida útil das usinas; no caso da hidreletricidade, não há limite temporal para a gerafão de energia diante de seu caráter renovável;

- no cálculo do custo da energia gerada por petróleo e gás natural, foi considerado um preco de petróleo de USS 30/barril;
- para efeito de comparafão com outras fontes, só foi incluida a parte do potencial hidrelétrico com custo inferior a USS 50/MWh;
- para o gás natural, derivados do petróleo e bionassa florestal, não foi estimado o potencial diante da dificuldade do estabelecimento de hipóteses que permitisse calculai-10.

TABELA 3-2
Potencial e custo das principais fontes de geracio

FOWTE	potencial avaliado Thh/ano	faixa de custo USI/NWh
hidreletricidade	765	15/50
CARUŻO	246	38/48
MUCLEAR	137	50
6as matural	nảo estimado	70
DER. PETRÓLEO	nảo estimado	70
8IOHASSA FLORESTAL	L nảo estimado	79

Das fontes apresentadas, somente a hidreletricidade, a energia nuclear e o carvão apresentam, no estágio atual do conhecimento, possibilidades de contribuirem de maneira significativa no atendimento da demanda de energia elétrica até 20i0. Isto não significa, entretanto, que as outras fontes não apresenten interesse e não devam continuar a ser objetos de estudose pesquisas, visando conhecer melhor as suas potencialidades e economicidade. Em particular, algumas destas fontes, mesmo que nảo venham a participar pesadamente no balanco energético nacional, poderão vir a se tornar importantes do ponto de vista local ou regional.

3.i Energia hidrelétrica

A tabela 3.1-i apresenta o potencial hidrelétrico atualmente conhecido classificado por regiấo, nivel de conhecimento e faixa de custo, totalizando 106,7 GWano de energia firme, dos quais 24,5 GWano já se encontram em operagão ou em construcão. Da parcela disponivel para a expansão do sistema (82,2 GWano) 59% encontram-se inventariados e 41%
estimados. Vale ressaltar que, em relagão aos aproveitamentos binacionais, foi considerada apenas a parcela pertencente ao Brasil.

3.1.1 Perspectivas do aproveitamento da energia hidrelétrica

Das fontes energéticas disponíveis no Pais para a geracão de energia elétrica, a hidreletricidade é a que apresenta melhores perspectivas de aproveitamento, devido ao grande potencial disponivel a custos inferiores ao das outras opföes.

Entretanto, o Setor Elétrico está consciente de que o grau do aproveitamento do potencial hidrelétrico brasileiro náo dependerá exclusivamente das estimativas atuais dos custos das fontes energéticas que com ele competem. Qualquer fonte energética possui caracteristicas socio-ambientais positivas e negativas, e as reacôes da sociedade diante delas determinarâo em grande medida o sea desenvolvimento futuro.

No que se refere a hidreletricidade, pode-se citar os seguintes aspectos positivos:

- trata-se de uma fonte energética renovável, não sujeita, portanto, a nenhum aumento de preqos ou interrupgôes de fornecimento de combustivel no futuro;
- existe no País uma enorme experiência no projeto e construgão de centrais hidrelétricas e dos sistemas de transmissão

CARACTERÍSTICAS DAS PRINCIPAIS FONTES DE GERACZAO

FONTE	CARACTERISTICAS NO HORIZONTE DO PLANO 2010

TABELA 3.1-1
8RASIL
POTENCIAL HIDRELĖTRICO - ENERGIA FIRME
POTENCIAL E CUSTOS

LIMITE SUPERIOR DE CUSTO (USSMWh)	NORTE		NORDESTE		SUDESTE + C.OESTE		SUL		BRASIL		
	INVENT.	ESTIMADO	TOTAL								
	(MWano)	(MWano)	(MWano)	(MWano)	(MWano)	(MWano)	(MWanol	(MWano)	(MWano)	(MWano)	(MWano)
(*)	2.571		3.556		15.619		2.745		24.491		24.491
15	9.182		3.556		15.650		2.745		31.133		31.133
20	9.182	882	5.745	.	15.926	\therefore	6.012		36.865	882	37.747
25	15.619	6.190	5.758	\because	19,474		9.045	63	49.856	6.253	56.149
30	18.592	7.684	6.443		20.750		9.961	392	55.746	8.076	63.822
35	21.513	12.863	7.560		21.920	117	10.809	1.091	61.802	14.071	75.873
40	21.513	13.747	7.633		23.679	181	11.077	1.612	63.902	15.540	79.442
45	22.564	15.031	7.694		24.510	320	. 11.397	1.996	66.165	17.347	83.512
50	23.977	15.872	7.898		25.018	824	11.411	2.384	68.304	19.080	87.384
60	24.370	16.824	7.936	40	25.753	2.295	11.484	2.896	69.543	22.055	91.598
75	25.015	47.904	7.968	181	26.777	2.846	11.534	3.275	71.294	24.206	95.500
100	25.466	18.185	7.977	224	27.206	3.892	. 11.552	3.832	72.201	25.933	98.134
150	25.681	19.776	7.977	229	27.409	4.914	11.552	5.296	72.619	30.215	102.834
Total	25.731	22.723	7.977	229	27.462	5.735	11.552	5.296	72.722	33.983	106.705

[^] A primeira linha refere-se a usinas en operaçăo ou em construção.
Pregos: JUNHOR6
Taxa de Calmbio: 13,84 Czsuss.
a elas associados, o que permitiu o desenvolvimento de uma grande capacidade produtiva e de uma razoável autonomia tecnológica, possibilitando continuar a desenvolver o potencial hidrelétrico con baixos indices de importacão;

- os reservatórios das hidrelétricas não se destinam exclusivamente a geracão de energia elétrica, mas podem ser utilizados para outras finalidades, tais comos irrigacão, controle de cheias, navegacaio, abastecimento d'água, etc.

Os aspectos negativos das hidrelétricas estão relacionados aos impactos causados pela inundacão de terras e alteracóes nos regimes dos rios, que afetam nảo só as populafóes vizinhas aos aprom veitamentos, como o meio físico e biológico. o setor Elétrico está convencido de que existem formas de minimizar estes efeitos a miveis socialmente aceitáveis, de modo a permitir que a hidreletricidade continue a ser a fonte básica de energia elétrica dentro do horizonte do Plano 2010. Entretanto, tem-se hoje a consciência de que o tratamento correto da questão ambiental é uma pré-condicão para que isto ocorra.

3.1.2 O aproveitamento do potencial
 hidrelétrico da Amazônia

Do potencial hidrelétrico hoje não aproveitado, a maior parte é representado por usinas localizadas na Amazônia. Mesmo que o mercado de energia elétrica desta região cresfa a taxas significativamente superiores àquelas admitidas nas atuais previsôes de mercado, haverá grandes disponibilidades de energia transportáveis a custos competitivos, para as regióes Nordeste e Sudeste.

Este fato determinou que os planos de expansão - descritos nos itens 5 e 6-sejam, a partir do final da próxima década, constituídos basicamente de grandes centrais hidrelétricas na região Amazônica, associadas a hidrelétricas de pequeno e médio porte nas demais regiôes do País.

Uma característica importante do potencial hidrelétrico da região Amazônica é que a maior parte da energia a ser aproveitada está concentrada em aproveitamentos localizados a pequena distância de núcleos urbanos como Marabá, Altamira, Itaituba e porto Velho, servidos por rodovias, ou de fácil acesso por via fluvial, o que reduz, consideravelmente, os problemas de apoio logístico a serem resolvidos.

Embora a construão de usinas na região Amazônica e das linhas de transmissão de interligacaio com as regióes Sudeste e Nordeste apresentem alguns problemas especiais do ponto de vista técnico e de impactos sobre o meio ambiente, os estudos já realizados indicam que os mesmos não inviabilizam economicamente os aproveitamentos, e que o prazo disponivel até a época de inicio de construfão permite equacioná-los.

No que concerne aos aspectos da tecnologia de construaizo, a experiencia adquirida na construfão de Tucurui, Balbina e Samuel indica que a engenharia nacional está plenamente capacitada para levar a termo, com exito, qualquer dos aproveitamentos projetados.

Especial atencão devera ser dedicada ao estudo dos problemas ambientais decorrentes da necessidade de inundar áreas relativamente grandes, cobertas pela floresta tropical caracteristica da região. É importante salientar, porém, que até a época prevista para implanta̧ão
dos grandes reservatórios, já estarão disponiveis informacôes valiosas em relafâo a essa questão, obtidas através da observafão do comportanento dos reservatórios de Tucuruí, Balbina e Samuel, que constituirão verdadeiros laboratórios, em escala natural, para estudo desses problemas. De posse dessas informacóes será possivel, se necessário, redimensionar os reservatórios ou adotar medidas que minimizem os impactos ambientais.

3.2 Carvão mineral

3.2.1 Potencial de geratão

0 potencial termelétrico a carvão mineral, mostrado na tabela 3.2.1-1 foi estimado com base no conhecimento atual das reservas e recursos nacionais de carvão mineral, e levando-se em considerafáo as seguintes hipóteses básicas:

- perdas de carvão no processo de lavra, devido a problemas geológicos como falhas, intrusão de diabásio, etc:
-- perdas de carvão no processo de beneficiamento, devido ao carreamento
processo de lavagen do minério;
- subtrafão do volume de carvão com voca̧ão para ser empregado com outras finalidades, como gaseificacão, siderurgia, substituicão de óleo combustivel, reduẩo direta, etc;
- usina termelétrica de referência, com 350 MW de potência instalada e tecnologia convencional, operando em média con 60% de fator de capacidade e tendo vida útil de 25 anos;
-. subtracão do volume de carvão comprometido com as usinas existentes e previstas no Plano de Recuperafâo do Setor Elétrico - PRS.

3.2.2 Custos de gerafão

Na tabela 3.2.2-i, são apresentadas as estimativas para os custos da energia elétrica gerada a partir de centrais a carvão de diferentes origens, bem como os dados básicos utilizados para o seu cálculo.

Como se observa, a utilizaç̃o do carvão a céu aberto na região de Candiota é a opGão mais econômica. Desta forma, o programa de implantacão de usinas térmicas a carvão deve ser concentrado inicialmente na regiã́o de Candiota, utilizando-se o carvão a céu aberto. No horizonte deste Plano, o potencial desta op¢ão é suficiente para suprir os programas termelétricos previstos. A única exceqão possivel será o aproveitamento do carvão de Santa Catarina, subproduto de outros usos como, por exemplo, da produção de carvão metalúrgico.
3.2.3 Politica de desenvolvimento da utilizacão do carvão mineral

O principal e mais recente documento que formula diretrizes e indica instrumentos de a̧ão de uma política de desenvolvimento da utiliza̧ão do carvão mineral brasileiro foi produzido através de um grupo de trabalho criado no âmbito do Ministério das Minas e Energia - MME e constituido de representantes da CAEEB, CRM, CNP, CURD, Eletrosul, Eletrobrás, DNPM, Governo do Estado do Paraná, Governo do Estado de Santa Catarina, SNIEC e DNAEE, tendo sido publicado em setembro de 1986.

A recomendagão do grupo de trabalho é de aumentar, até o final do século, a participacão relativa do carvão mineral no balanco energético do País, de forma compativel com o volume de suas reservas e com sua competitividade. Para a consecurão dessa recomendacão, foi proposta a adocão de um conjunto de diretrizes e de instrumentos de afão política, técnica e econômica.

Com relacão especificamente ao Setor Elétrico, destacam-se as seguintes diretrizes:
-- aumentar a participacão relativa do carvão energético na geracão de energia elétrica;

- articular o planejamento do setor carbonifero com o planejamento energético global, em especial com:
- setor metalírgico;
- Setor Elétrico:
- setor petróleo e gás;
- fomentar o desenvolvimento de um modelo para a economia carbonifera nacional que estimule o consumo de fraföes pobres, resultantes do be-
neficamento do carvão, nas próprias regiôes produtoras (preferencialmente em usinas termelétricas) e o consumo das fracôes nobres em localidades mais afastadas dos centros de producão;
- assegurar ao consumidor um prego de carvão mineral compativel com a estrutura geral de preqos aos energéticos que com ele competem.

Como instrumento de acão, destaca-se a proposifão de realizacão de um protocolo de intenfốes entre Eletrobras, CAEEB, SNIEC E DNAEE, tendo em vista a importância do Setor Elétrico como consumidor de carvẫo e também considerando o papel estratégico das usinas termelétricas na economia do carvão mineral.

```
Os principais pontos a serem considerados nesse protocolo se referem
a:
- estabelecimento de cotas para compra e venda de carvão para as
usinas termelétricas, resguardando a economicidade dos setores elétri-
co e carbonífero, a luz do interesse nacional;
```

- expansão da capacidade termelétrica instalada - incluindo uma
potência mínima
de

TABELA 3.2.1-1
BRASIL
POTEMCIAL TERMELÉTICO A CARVZOO MINERAL
(兴)

ESTADO	POTEMCIAL TERMELĖERICO		
	CÉU Aberto	SU8-50L0	TOTAL
Rio Grande do Sul			
Candiota	8.000	22.600	33.600
- Baixo Jacui/Iruí	-	12.890	12.801
Total	8.000	35.46	43.40
Santa Catarina			
- Barro Branco	-	600	64
- Bonito	-	2.800	2.890
Total	-	3.400	3.400
Total Geral	8.009	38.800	46.880

TABELA 3.2.2-1
BRASIL
CUSTOS DE REFERENCIA DE GERACZ0 DE ELETRICIDADE En Centrais a carvao hineral

USS (86)

DISCRIMIMACZO	CANDIOTA CÉU ABERTO	CANDIOTA SUBSOLO	OUTRAS SUBSOLO
Custo de Investinento (US/ith)	26,9	26,9	24,7
Operarão e Manutencảo (USS/Klh)	3,3	3,3	3,3
Combustivel (USS//8m)	8,0	12,0	12,0 a 24,0
Custo Final de Geragão (USS/RWh)	38,2	42,2	40,0 a 48,
Dados Básicos Utilizados:			
Custo de Construcio (uSS/kN)	1.200	1.200	1.100
Juros Durante Construcão (USS/k:W)	300	301	275
Custo de Investisento (USS/ky)	1.500	1.500	1.375
Taxa de Atualizarão Anual	10\%	10\%	102
Vida util	25 ANOS	25 ANOS	25 AMOS
Fator de Capacidade	7\%\%	70\%	70\%
Central de Referência			
Potência Bruta	350 NH	350 W	350 \%
Potência Líquida	315 誾	315 K	315 W

700 MW no periodo 1996/2000-sendo que o Setor Elétrico deve orientar - seu programa considerando unidades de produfão de pequeno e médio porte até 120 MW , ao lado das de maior porte (350 MW), de forma a viabilizar 0 desenvolvimento da capacitafão tecnológica nacional em projeto, fabricação e construção de usinas termelétricas a carvão:

- localizar as novas usinas preferencialmente junto às minas, possibilitando o consumo direto de carvảo bruto ou das frafôes pobres oriundas do beneficiamento.

3.3 Energia Nuclear

3.3.1 Potencial de gera¢ão

Das várias ocorrências de urânio já registradas no solo brasileiro, algumas estão em fase de prospeção, enquanto outras ja tiveram determinados seus potenciais produtores, constituindo reservas geológicas da ordem de $300.000 t$ de U308. Entretanto, para fins de estimativas econômicas relacionadas ao suprimento de combustivel nuclear, deve-se considerar a reserva recuperável que, entre outros parâmetros, leva em conta perdas na lavra e no beneficiamento eos custos de extracão. Tais reservas correspondem a 120.100 t , das quais 65.000 nas jazidas de Lagoa Real e Itataia.

A estimativa de potencial para gerafóo eletrica nuclear - não se considerando a reciclagem do urânio eplutônio residuais - envolve a formulacâo de hipóteses e a adogão de parâmetros relativos à gerência externa do ciclo de combustível e de operafäo da usina nuclear. Foram adotados os seguintes parâmetros:

- vida ítil da usina: 25 anos;
- reservas recuperáveis de urânio: 120.100 t 4308 ;
-- perda na conversáo: 0,5\%;
- perda na fabricacão: $1,0 \%$ \%
- rejeito do processo de enriquecimento: 0, 30% \%
- potencia liquida da unidade de referencia: 1245 MW;
- fator de capacidade médio anual: 60\%;
- consumo total na vida útil: 5.666 t U308;
-- duracão das recargas: 2 meses;
-- ciclos operacionais: io ciclo- 15 meses demais ciclos - í meses;
-- enriquecimento: 1 a carga - $1,9 \%$, $2,5 \%, 3,0 \%$ de $\mathbf{~ U 2 3 5}$ recargas - 3,2\% de U235\%
-- massas: 1 a carga - $103,06 \mathrm{t}$ de U 02 recargas - $34,35 \mathrm{t}$ de L02.
Utilizandowse os parâmetros acima foi calculada a capacidade instalável chegando-se a um valor em torno de 26000 MW , que corresponderia a 21 unidades de 1245 MW de potencia liquida.
3.3.2 Custos futuros da energia nuclear no

Brasil

Apesar de existirem no Pais uma central nuclear em operacão e duas em construfão, torna-se extremamente dificil estimar-se os custos de futuras centrais diante dos grandes problemas encontrados na construgão e operafão destas três primeiras, que não devem se repetir com a mesma intensidade no futuro, especialmente numa visão de longo prazo. Por outro lado, apesar das grandes potências já possuirem hoje uma experiência de décadas no uso da energia nuclear, as estimativas de custos variam muito mesmo dentro de um mesmo país, o que mostra que a tecnologia nuclear ainda não atingiu um estágio que permita a definicão de um projeto padrão e técnicas construtivas universalmente aceitas.

A comparacaio de custos originários de fontes de dados diferentes é dificil, diante da variabilidade dos critérios adotados. Nâo só os valores de parâmetros fundamentais, como a taxa de atualizafão e os fatores de capacidade variam de fonte para fonte, como também as formas de contabilizagão dos juros durante a construgão e a considerafão dos efeitos inflacionários. Para se evitar estes problemas, optou-se pela utilizafão de uma ínica fonte para os custos, adaptando-se apenas os resultados aos critérios adotados no Brasil, a fim de torná-los utilizáveis nas
projecốes dos custos de gerafão de centrais nucleares aqui construidas.

Nas tabelas 3.3.2-1 e3.3.2-2, são apresentados os resultados das comparafôes dos custos de investimento ede geracão de eletricidade para centrais PWR construidas nos Estados Unidos, Franca, Alemanha e Reino Unido. Sobre a forma como elas foram obtidas, cabem as seguintes observacões:

- os custos de construgão foram retirados da publicacão: "La Planificacion e les Etudes de Faisabilité des Projets NucleoElectriques - Syntése des cốuts", por J.Baumier, Institut National des Sciences et Techniques Nucleaires, 1986;
- os tempos de construcão foram inferidos a partir dos valores dos juros durante a construgão;
- foram mantidos os valores da vida util, 25 anos, e do fator de capacidade, 70%;
-- os juros durante a construgão foram recalculados para uma taxa de atualizarão de 10% e utilizando-se os critérios propostos na publicaGáo: "Expansion Planning for Electrical Generating Systems, a Guide Book"ppublicado pela Agência Internacional de Energia Atômica, 1984.

Os custos finais de gerafáo, constantes da tabela 3.3.2-2, variam entre um valor máximo de 66,5 USS/MWh, no oeste dos Estados Unidos e um mínimo de 28,3, na Franca. Excetuando-se estes valores extremos, os tres outros resultados mostram uma convergencia maior: 4i,3 na Alemanha, 45,i no Reino Unido e 47,8 no centro dos Estados Unidos.

Um primeiro aspecto que deve ser ressaltado na utilizagão destes números é quanto às taxas de câmbio. Desde a data de referência adotada, 01/01/84, observou-se sucessiva desvalorizacão do dólar em relagão às moedas dos países europeus, o que certanente provocou aumentos nos custos nucleares destes paises, quando medidos em dólares.

0 baixo custo da energia nuclear na Franca é principalmente resultado das excepcionais condicöes de realizacão de seu programa nuclear, já analisadas anteriormente e que náo encontran paralelo em nenhum outro local. J. Baumier, na referencia já citada, estima um aumento de 50%, em relacão as condicőes francesas, nos custos de construcão de uma central nuclear em umpaís em desenvolvimento. É razoável supor-se também um aumento no tempo de construgão, que passaria de 6 anos para pelo menos 8 anos, hipótese que pode ser considerada conservadora diante da experiencia brasileira. Combinando-se estes dados com uma desvalorizafão do dólar de 20%, o custo de geracão nuclear passaria para $44,6 \mathrm{US} \$ / \mathrm{MWh}$, sem considerar nenhum aumento nos custos de conbustivel, operacão e manutencão, o que fatalmente também ocorreria.

Se for levada em conta a desvaloriząão do dólar, os custos previstos para o centro dos Estados Unidos, Alemanha e Reino Unido ficarão todos próximos de 50 US\$/MWh. Seguindo a mesma linha de racionínio anterior, é possivel argumentar que, no Brasil, os custos seriam maiores do que os destes países. Entretanto, é provável que a menor produtividade em nosso pais seja compensada por menores salários, resultando em custo final da mesma ordem de grandeza.

Face ao exposto, será adotado um valor de referencia de 50 US\$/MWh para o custo de geracão nuclear no Brasil a longo prazo. Na tabela 3.3.2-3, encontram-se as hipóteses adotadas e os valores dos parâmetros que levariam a este custo final. Propositadamente, eles foram apresentados em números redondos, a fim de se evitar uma falsa impressão de precisão.
3.3.3 Ritmo do Prograna Nuclear Brasileiro

A Comissão de Avaliacão do Programa Nuclear Brasileiro (CAPNB) recomendou a manutencão de um programa mínimo de construgão de centrais, com o objetivo de preservar o conhecimento tecnológico adquirido e continuar a desenvolvélo, a fim de preparar o pais para quando a energia nuclear se tornar economicamente justificada. Além do término de Angra II e III, a Comissão propốe que, em 1989, seja estudada a decisão de se iniciar a construcão de uma nova central.

Mesmo que seja decidida a construcão de uma nova central em 1989, considerando-se que serão necessários de dois a três anos de estudos prévios e de oito a dez anos de tempo de construcão, esta nova central muito provavelmente nã̉o estará pronta até o ano 2001. Desta forma, não será considerada nenhuma nova central dentro do horizonte de médio prazo (1987/2001). Já no longo prazo, considerou-se que entrarấo em operacão quatro

TABELA 3.3.2-1
CUSTOS DE INEESTIMENTO DE CENTRAIS PLIR
PRECOS DE $1 / 1 / 84$

País	CENTRAL DE REFERÊMCIA (源)	TEMPO DE CONSTRUCito (AN)	CuSTOS DE CONSTRUCEZ (US5/kN)	JUROS DURAMTE A CONSTRUCEZO (USS/KV)	CUSTO TOTAL DE IWESTITENTO (USS/KH)
Alenanha	1×1.258	6	1.248	366	1.614
Estados Unidos .Centro	1×1.200	8	1.415	585	2.000
Estados Unidos . Deste	1×1.200	10	1.967	1.074	3.041
Franca	2×1.390	6	731	214	945
Reino Unido	1×1.155	7,5	1.242	817	2.059

FONTE: La planification et les Estudes de Faisabilité des Projets Nucleo - Electriques Bausier J. - Institut National des Sciences et Techniques Hucleaires, $\mathbf{1 9 8 6}$.

TABELA 3.3.2-2
CUSTO DE GERACZO DE ELETRICIDADE EK CENTRAIS PUR PRECOS DE $1 / 1 / 84$ (USS/睤)

País	inestinento	operaczo E MANUTEMCEZO	condustivel	CUSTO FIMAL DE GERACZO
Aleranha	29,0	5,0	7,3	41,3
Estados Unidos . Centro	36,0	4,8	7,1	47,9
Estados Unidos . Deste	54,6	4,8	7,1	66,5
Franca	17,0	4,0	7,3	28,3
Reino Unido	30,8	5,5	8,8	45,1

FONTE: La Planification e les Estudes de Faisabilités des Projets Nucleo - Electriques Baunier, J. - Institut National des Sciences et Techniques Mucleaires, 1986.

TABELA 3.3.2-3
BRASIL
CUSTOS DE REFERÊNCIA DE GERACZO DE ELETRICIDADE EM CENTRAIS PWR

DISCRIMINACÃO	US5 (86)	
Custo de Investimento	36 US\$/MWh	
Operacão e Manutencão	6 USS/MWh	
Combustivel	8 US\$/MWh	
Custo Final de Geracaio	50 US\$/MWh	
Dados Básicos Utilizados:		
Custo de Construgão	1400 U	U58/KW
Juros Durante a Construtão	600 U	US\$/KW
Custo de Investimento	2000	S5/KW
Taxa de Atualizagão Amual	10%	
Vida util	25 a	nos
Fator de Capacidade	70%	
Central de Referências		
Potência Bruta	1300	MW
Potencia Liquida	1245	MW

novas unidades de 1300 MW , sendo duas entre 2001 e 2005 e as outras, entre 2006 e 2010.

Diante das incertezas que pesam sobre o futuro da energia nuclear, esta proposta deve ser encarada como tendo um caráter provisório. É preciso lembrar que os próximos anos serão fundamentais para a definifáo do futuro da energia nuclear, tanto no exterior como no Brasil. As incertezas dos custos somam-se as dúvidas sobre a forma como a sociedade brasileira reagirá às caracteristicas desta fonte de energia. A combinacão da manutencão dos custos nos níveis previstos com uma boa aceitabilidade social poderá levar a um desenvolvimento do programa de construcáo nos niveis propostos ou mesmo superiores. Entretanto, é possivel que uma conjugafâo de fatores negativos venha a provocar novos atrasos.

Além das questöes de seguranca, a energia nuclear no Brasil sofre grande oposicão por ser percebida como uma fonte energética extremamente cara, de baixo desempenho e cujas decisöes foram tomadas sem a participacão dos atores nela interessados. Para se preservar a energia nuclear como uma alternativa futura, é necessária a reversấo deste quadro. Nấo se trata de realizar campanhas de esclarecimento, cujos efeitos no momento podem ser mais negativos que positivos. o qué é necessario são medidas de longo prazo, capazes de gerar fatos concretos que contribuam para melhorar a imagem piblica da energia nuclear. Um importante passo será dado nesse sentido com uma boa opera-

Gão de Angra I e conclusão de Angra II e III em prazos e custos compativeis com as atuais estimativas.

4._-_MEIQ_AMRIENIE_E_INSERCEXQ_BEGIQNAL_DQS EMEREENDIMENIOS

Paralelamente às medidas ligadas à seleqäo e viabilizacão do programa de obras necessário ao atendimento dos requisitos de energia elétrica, - Plano 2010 apresenta a oportunidade de tratar o problema das relaföes do meio ambiente com o Setor Elétrico de uma forma integrada, que enseje o necessário suporte financeiro e institucional para as acöes daí decorrentes.

Sendo o desenvolvimento uma aspirarão do povo brasileiro e um objetivo de politica nacional, cumpre assegurá-lo em consonância com o equacionamento ambiental, conforme ressaltado nos trechos seguintes da "Declaracão sobre o Meio Ambiente", aprovada na conferência da ONU sobre meio ambiente, realizada em Estocolmo, em 1972:

- "Os recursos naturais da Terra, incluindo o ar, a água, o solo, a flora e a fauna $e, ~ e m$ especial. amostras representativas dos ecosistemas naturais, devem ser salvaguardados no interesse das geracö́es presentes e futuras, mediante planejamento e gestão adequados".
-- "O desenvolvimento econômico é indispensável, se se quiser assegurar um ambiente propicio à vida e ao trabalho da pessoa humana e criar na Terra condifôes indispensáveis à melhoria da qualidade de vida".
- "No caso dos países em desenvolvimento, a estabilidade dos prefose a remuneracãoo adequada dos produtos básicos e das matérias-primas são essenciais para a gestâo do meio ambiente, devendo considerar-se, em pé de igualdade, os fatores econômicos e os processos ecológicos".
- "Com o fim de racionalizar a gestão de recursos e assim melhorar o meio ambiente, os Estados devem adotar uma concepfão integrada e coordenada para seus planos de desenvolvimento, de modo que estes sejam compativeis com a necessidade de proteger e de melhorar o meio ambiente, no interesse de sua populafão".

Revendo-se a história recente da atuacão setorial, identifica-se que, desde meados da década de 70, é exigido que a construgão de usinas hidrelétricas seja precedida de estudos de impacto ambiental. Inicialmente, esses estudos eram incluidos de modo a atender especificagôes determinadas pelo Banco Mundial. Mais tarde, o DNAEE incluiu os aspectos ambientais entre os requisitos para aprovacão de estudos de viabilidade de aproveitamentos hidreletricos.

A atuacaio do Setor Elétrico na área ambiental, não obstante ser significativamente maior do que a de outros setores da economia, vem sendo questionada pela opinião publica. Tal situacão decorre do efeito conjugado do maior envolvimento de diversos segmentos da sociedade nos processos de tomada de decisão de entidades governamentais; do conhecimento incompleto e superficial, por parte do público, das medidas efetivamente adotadas pelo Setor Elétrico (em especial aquelas intensificadas nos liltimos três anos); e de uma maior conscientizacão, nacional e internacional, da relevância da conservacão e recuperacão do meio ambiente para a sociedade.

A necessidade de uma afão abrangente na área ambiental conjugou-se com a oportunidade do Plano 2010, ensejando uma revisão do enfoque metodológico e uma consolidação de programas, de forma a produzir, em
caráter pioneiro, um Plano Diretor, passível de orientar doravante o processo de aperfeigoamento das agôes do Setor Elétrico.

O Plano Diretor vem sendo elaborado sob a coordenagão da Eletrobrás. Uma segunda versấo, já incorporando criticas e sugestôes de órgãos cono a Sema, Funai e IBDF, e observacöes efetuadas pelo Comitê Consultivo do Meio Ambiente, criado para alto aconselhamento da direfão da Eletrobrás, encontra-se em viade ser editada e é peqa complementar ao Plano 2010.

O objetivo fundamental do Plano Diretor é assegurar condicöes para a incorporacão, de forma orgânica e sistemática, da dimensão ambiental no planejamento e execufão das obras e servicos do Setor Elétrico.

Considerando a evolugão da politica para o meio ambiente e também a natureza e dimensão das obras e servicos previstos, um equilíbrio maior entre os interesses nacionais ou setoriais e interesses regionais ou locais poderá ser alcancado através de uma estratégia que contemple a inserã̃o regional dos empreendimentos do Setor Elétrico. Por esta razão, o modelo de planejamento que comega a se delinear procura focalizar as obras e servicos do Setor Elétrico como integrantes do processo global de desenvolvimento das unidades geográficas em que se situam.

- Plano Diretor busca, comesta diretriz básica, a internaliząão, na área de influência do empreendimento, de um numero tão expressivo quanto possível de benefícios associados à sua implantagão. A exequibilidade da insergão regional dos empreendimentos depende, contudo, da observância concomitante a tres outras diretrizes: viabilidade ambiental, articulacão interinstitucional e eficácia gerencial.

Diretriz analitica, a viabilidade ambiental significa o exame a a comprovąão de que é possivel a inserfão adequada de um empreendimento de engenharia na unidade geográfica onde estara localizado, tendo-se avaliado os múltiplos pontos de interacão entre o empreendimento e sua área de influêcia. Pode ser entendida como o resultado da busca da maximizario dos benefícios advindos dos empreendimentos e da minimizagío de seus efeitos adversos. A viabilidade ambiental, normalmente, é conseguida mediante custos econômico-financeiros menores se se contemplam afôes de natureza preventiva e sua implementafão no
tempo certo. Afôes para corrigir efeitos negativos já manifestos no sistema ambiental frequentemente representam solucőes tardias, com altos custos econômicos, sociais e políticos.

Para tornar operacional a diretriz de insercão regional, as acôes devem convergir para os mecanismos de articulacão interinstitucional necessários à identificacão de objetivos e metas de desenvolvimento em diversos niveis da hierarquia politicomadministrativa do Pais, ao levantamento de planos, programas e projetos voltados para a sua consecucão, à compatibilizacão de acôes e ao rateio de custos entre os agentes setoriais envolvidos. Este processo poderá evitar impasses e alcancar solucöes globais mais eficientes, reduzindo o tempo dispendido e economizando recursos financeiros, na medida em que os diversos agentes modificadores do espaco geoeconômico-social sejan levados a conjugar seus esforcos num mesmo sentido.

Finalmente, para atingir o objetivo fundamental de incorporar a dimensão ambiental à sistemática de planejamento do setor, é essencial que as empresas concessionárias, também na área de meio ambiente, aumentem sua eficácia gerencial, estruturando-se adequadamente e incorporando aos seus quadros gerentes especialistas capacitados para elaborar, implantar e avaliar planos, programas e projetos na área de meio ambiente.

5.1 Expansã̉o do sistema de geracão

Dentre as várias alternativas estudadas para a expansão a longo prazo do sistema de gerafóo, escolheu-se uma que se tomou como referencia básica e cujas caracteristicas principais são mostradas na tabela 5.i1.

A observacão da tabela 5.1-1 mostra que a fonte básica para a geracão de eletricidade continuará a ser a hidreletricidade, até o ano 20i0, quando ainda será responsável por 89% da potência instalada total do Pais, ligeiramente inferior ao percentual atual de 90%. A evolugão do aproveitamento do potencial hidrelétrico brasileiro competitivo é mostrada na tabela 5.1-2. No ano 20i0, prevê-se que, para o total do Pais, $85,8 \%$ deste potencial estará aproveitado. Regionalmente, este índice variará de um mínimo de 78% na regiáo Norte a um máximo de 98,6\% na região Nordeste.

As transferências de energia firme entre as regiöes são visualizadas na figura 5.1-1, indicando-se também a participąão do suprimento externo no atendimento a cada regiâo. As regiöes Sudeste e Nordeste seráo grandes importadoras de energia da região Norte, permanecendo a regiáo Sul como exportadora para a região Sudeste.

No estabelecimento do programa de expansão, considerou-se que a disponibilidade de recursos hidrelétricos superiores às necessidades do mercado não constitui razão suficiente para impedir o desenvolvimento, ainda que moderado, do parque termelétrico. Se forem considerados simplesmente os custos unitários de gerafão, a alternativa puramente hidrelétrica teria custo total atualizado cerca de 2,3\% inferior à alternativa escolhida $<83,8$ contra 81,9 bilhóes de dólares de custo atualizado a 1995). Além de ser pouco significativa, esta vantagem de custo deve ser relativizada em funcão de outros aspectos que serão analisados a seguir.

Nâo é razoável supor que o Brasil aproveite todo o seu potencial hidrelétrico competitivo e só então comece a construcão de termelétricas, acionando bruscamente uma nova indústria que deveria se iniciar já com elevado ritmo de producão. Na década seguinte ao ano 20i0, será necessário o desenvolvimento de um considerável parque termelétrico, diante do aproveitamento integral do potencial hidrelétrico competitivo. Na exploraç̃o desta questão, foram estudadas diferentes opgốes de desenvolvimento dos programas hidrauilicos e térmicos além do horizonte 2010, efetuando-se a análise das escalas industriais decorrentes das opföes efetuadas. Esta analise mostrou a conveniencia de se colocar um limite de, em média, 5000 mW por ano na fabricafão de equipamentos hidrelétricos na década de 2001 a 2010, garantindo, desta forma, uma transicão mais harmônica de uma indústria preponderantemente hidrelétrica para outra preponderantemente termelétrica.

Considerou-se também a necessidade de o Setor Elétrico, por razôes estratégicas, continuar acumulando experiência na construẩo e operacão de centrais termelétricas, para desenvolver uma capacitacáo que, no futuro, lhe será essencial, e para melhorar o conhecimento dos dados técnicos e econômicos necessários à avaliagão correta da competitividade do carvão e da energia nuclear em relafão à energia hidrelétrica. A introducão de centrais a carvão de 50 e 125 MW justifica-se pela possibilidade que eriam da instalafão de unidades-
piloto, utilizando novas tecnologias como leito fluidizado, além de possibilitar que indústrias nacionais, que ainda nâo fabricam equipamentos para usinas de maior porte, prepararem-se para esta tarefa através do paulatino aumento da escala de seus fornecimentos.

Em decorrencia dos fatores descritos, resultou a proposicão do ritmo mínimo de expansão do parque termelétrico, apresentado na tabela 5.13, ademais respaldado pelo consenso entre os técnicos do setor Elétrico envolvidos com a questão e os segmentos industriais afetados.

TABELA 5.I-3
EXPAMSOZO DD PARQUE TERKELÉtrico (*)
(洪)

IIPO	1996/20	201/205	2006/2010
Muclear	-	2×1.245	2×1.245
Carvão-RS	2×315	4×315	3×540
Carvão-SC	4×50	1×315	1×315

(*) As potências apresentadas sảo líquidas, o que, no caso das centrais a carvão, significa una dininuiçảo de 10\% el relacî̃o à potência bruta.

TABELA 5.1-1
BRASIL.
EVOLUCAZO DO PARQUE GERADOR POTÊNCIA INSTALADA 1986/2010 (GW)

TIPO	1986	1990	1995	2000	200	2010
Hidro	38,5	53,4	73,9	93,3	116,9	141,8
Térmico	4,2	5,1	7,4	9,7	13,8	18,2
Carvão	0,7	1,3	1,9	3,0	4,6	6,5
Nuclear	0,6	0,6	1,9	3,1	5,6	8,1
Outros	2,9	3,2	3,6	3,6	3,6	3,6
Total	42,7	58,5	81,3	103,0	130,7	160,0

PARTICIPACAZO

 (\%)| TIPO | 1986 | 1990 | 1995 | 2000 | 2005 | 2010 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $H i d r o$ | 90,2 | 91,3 | 91,0 | 90,6 | 89,4 | 88,6 |
| Térmico | 9,8 | 8,7 | 9,0 | 9,4 | 10,6 | 11,4 |
| Carváo | 1,6 | 2,2 | 2,3 | 2,9 | 3,5 | 4,1 |
| Nuclear | 1,4 | 1,0 | 2,3 | 3,0 | 4,3 | 5,1 |
| Outros | 6,8 | 5,5 | 4,4 | 3,5 | 2,8 | 2,2 |
| Total | | 100,0 | 100,0 | 100,0 | 100,0 | 100,0 |

Nota: Em funcão dos estudos a serem realizados em 1988, de acordo com o descrito no item 3.1.1.i, esta tabela podera vir a ser alterada, pela introducão de novas termeletricas, como solucío de emergencia

TABELA 5.1-2
BRASIL
EVOLUCAO REGIONAL DO APROVEITAMENTO DO POTENCIAL HIDRELÉTRICO - ENERGIA FIRME 1995/2010

REGIAXO	POTENCIAL TOTAL ECONOMICO (GWano) (1)	1995		2000		2005		2010	
		(GWano)(2)	(\%) (3)	(GWano)	(\%)	(GWano)	(\%)	(GWano)	(\%)
Norte	36,2	2,9	8,0	6,1	16,9	17,1	47.2	28.2	78,0
Nordeste	7.8	6,0	76,9	7,3	93,6	7,4	94,9	7,7	98,6
Sudeste + C.Oeste (4)	30,9	21,9	70,9	25,6	82,8	26.7	86,4	28,1	90,9
Sul	14,9	6,8	45,6	9,6	64,4	11,5	77,2	13,1	87,7
Total	89,8	31,6	35,2	48,6	54,1	62,7	69,8	77.1	85.8

Notas: (1) Estes valores representam a energia firme total dos aproveitanentos hidrelétricos competitivos com a termeletricidade (custo inferior a 50 US $\$ / \mathrm{MWh}$).
(2) Potencial hidrelétrico aproveitado até 0 ano.
(3) Relação entre o potencial aproveitado até o ano e o potencial total economico.
(4) inclui a totalidade da disponibilidade de Itaipu, deduzido o fornecimento ao Paraguai.

BRASIL
FLUXOS ELÉTRICOS INTER-REGIONAIS ENERGIA FIRME - (MW ANO)

5.1.1. Inundacão de terras pelos
 reservatórios de hidrelétricas

Na tabela 5.i.1-i encontra-se uma estimativa da evoluão das áreas inundadas pelos reservatórios das usinas hidrelétricas constantes dos planos de expansão. São apresentadas também as áreas que seriam inundadas se todo o potencial hidrelétrico brasileiro conhecido fosse aproveitado, valor teórico, que em termos práticos jamais será atingido, pois não se prevê que todo este potencial seja utilizado.

> TAELA 5.1.1-1
> BRASIL
> ESTITMTITUA DE GREAS IMMNOADAS POR

REGIZ ${ }_{\text {a }}$	$\begin{aligned} & \text { GREA } \\ & \text { TOTAL } \end{aligned}$	GREA IMMmAdA					
		USIMAS EK OPERACZO E CONSTRUCZZO		USIMAS PREVISTAS AMO 2000		POTEMCIAL HIDRELĖTRICO TOTAL	
	(106ha)(106ha) (\%)			(106ha)(\%		(106ha)	(z)
Amazônia Outras	500	0,6	0,1	1,3 0	0,3	10,0	2,0
Regiôes	5 35t	2,3	0,6	3,9 1,	1,1	4,2	1,2
Total	859	2,9	0,3	5,2		14,2	1,7

Sobre os dados apresentados, cabem as seguintes observacôes:

- As vantagens relativas da hidreletricidade em relacão as outras fontes de energia elétrica permitem afirmar que o total da área a ser utilizadas pelas hidrelétricas é perfeitamente compativel com os seus beneficios potenciais. Entretanto, existem sempre esquemas alternativos de divisão de queda, nâo cogitados no momento pelo Setor Elétrico, que, as custas de aumentos de custo e perdas de energia, podem proporcionar significativas diminuiföes nas áreas inundadas. Naturalmente, isto será realizado se a sociedade brasileira assim o determinar, cabendo ao Setor Elétrico a obrigacão de analisar as implicafôes desta decisão, especialmente no que se refere aos aumentos de custo de gerafão de energia elétrica;
- A gerafão de energia hidrelétrica não é o único beneficio associado à construgão de reservatórios. A água armazenada servirá também para irrigafão, abastecimento d'água, controle de cheias, navegacão, psicultura e lazer; sendo que somente a irriga̧ão pode compensar com proveito a ocupacão de terras férteis;
-- O potencial da Amazônia utiliza terras em quantidades significativamente maiores do que o do resto do Pais. Embora, pelas estimativas atuais, os custos dessas inundacőes não sejam elevados, pois trata-se de região com escassíssima populafão, baixo nivel de atividade econômica, ausência de infra-estrutura e solos relativamente pouco férteis, outros fatores, en particular os ligados à valoriza̧ão dos eco-sistemase à protefão das populacões indígenas, devem ser analisados e devidamente equacionados.
- Fora da Amazônia, o problema é de natureza diferente, pois embora a ocupacảo de terras seja relativamente menor, nelas existe maior atividade econômica e densidade populacional. Entretanto a proximidade dos centros consumidores, limitando os custos de transmissão, melhora a competitividade das hidrelétricas, permitindo que elas, mesmo arcando com os custos das perturbacôes que introduzem, continuem a se justificar economicamente.
- O caso da bacia do rio Uruguai constitui un bom exemplo deste ultimo aspecto. No seu inventário, são previstos 22 aproveitamentos hidrelétricos, que, no conjunto, terấo uma energia firme de 3870 MW ano, correspondente a uma potencia instalada entre 7000 e 8000 MW . Se todas estas usinas fossem construidas, seria inundada uma area de 161.000 ha, dos quais 124.000 são cultiváveis e, destes, 69.000 mecanizáveis, valores extremamente modestos diante de cerca de 52 milhöes de hectares hoje cultivados no Brasil e do valor da energia que seria produzida. Em outras palavras, para se aumentar 16% na atual potência instalada brasileira, a inundafão de terras seria equivalente a $0,3 \%$ da área hoje cultivada no Pais.
5.1.2 A questão da complementafão térmica

A participacão da potêcia instalada em centrais térmicas, em relacão
a potência instalada total, nos planos de expansão aqui apresentados. é perfeitamente adequada ao critério de garantia de suprimento do mercado de energia elétrica.

Como já foi analisado, por este critério procura-se manter orisco anual de déficit do mercado de energia elétrica inferior a 5%. Nos planos de expansão, respeitada esta restrifão, procura-se determinar o conjunto de usinas que minimiza o custo total atualizado, o que implica optar-se por configuracão onde predominam centrais hidrelétricas, diante dos seus menores custos de gerafão. Naturalmente, se fossem adotados critérios de garantia de suprimento mais severos, seria necessário aumentar o número de usinas, mas não necessariamente a participacão relativa da gerafão térmica, pois as hidrelétricas continuariam prioritárias, devido aos seus menores custos.

As condicôes de atendimento observadas nos ultimos anos não foram consideradas satisfatórias. Isto, entretanto, não foi devido à falta de termelétricas, e sim ao sistemático corte observado nos investimentos caracterizados como necessários pelo Setor Elétrico.

A persistir tal situafão, os racionamentos de energia elétrica, que recentemente atingiram as regiôes Sul e Nordeste, continuarão a ocorrer e será ilusório atribuílos à natureza aleatória das vazões, fenômeno com o qual o Setor Elétrico há várias décadas já encontrou formas de convivência.

Observe-se, finalmente, que, uma vez caracterizada uma situagão de carencia de oferta de energia a curto prazo, entre as poucas medidas que podem ser tomadas para minorar o problema inclui-se a instalacão de turbinas a gás, diante de seus pequenos prazos de instalafão. Esta solucão, entretanto, só deve ser adotada em último caso, diante de seus altos custos e elevado consumo de óleo diesel (derivado critico na estrutura de refino da Petrobrás) ou de gás natural (energético de pequena disponibilidade no País).
5.1.3 Alternativas ao aproveitamento do potencial hidrelétrico da Amazônia

A imposigão de restricöes ao aproveitamento do potencial hidrelétrico da Amazônia implicará, necessariamente, no aumento do parque termelétrico na década de 2001 a 2010. Em particular, se näo for permitida exportacöes para a região Sudeste e nem ampliafôes da ligafão Norte-Nordeste jà em construcão, seria necessário a instalafão de umparque nuclear composto por 17 unidades de 1245 MW até o ano 2010.

Diante das já analisadas dificuldades tecnológicas econômicas da energia nuclear, associadas às dúvidas quanto à sua aceitabilidade social, seria extremamente dificil concluir a construgão de um número tão grande de unidades até 2010. Para tanto, seria necessario o lan. Gamento imediato de um grande programa de construfáo de centrais nucleares, em condicôes extremamente desfavoráveis, seja sob o ponto de vista financeiro, diante do maior custo destas centrais, seja sob o ponto de vista do apoio da sociedade.

5.2 Expansão do sistema de transmissão

A partir do final deste século, as interligafões elétricas entre regiöes se caracterizam pela necessidade crescente de transferencia de energia da regiấo Norte para o suprimento das regióes Nordeste e Sudeste-C.0este.

Uma visão do papel que as interligăões regionais desempenharão no futuro é mostrada na tabela $5.2-1$, que apresenta a comparafão do porte das interligafốes em relacão à carga dos sistemas receptores no instante da ponta.

Para a transmissão de grandes blocos de potência a longa distância, optou-se pelatransmissão em corrente continua, $\pm 600 \mathrm{kV}$, que é a tecnologia utilizada em Itaipu. Em relafão a esta alternativar as estimativas atuais mostram que a transmissão em corrente contínua, $\pm 800 \mathrm{kV}$, apresenta custo 4% inferior, e a transmissáo em corrente alternada, $1000 \mathrm{kV}, 4 \%$ superior. Diante da proximidade destes custos, não se pode prever com seguranca quais as soluqóes tecnológicas que serão efetivamente adotadas no futuro.

Na tabela 5.2-2, tem-se um quadro-resumo das perspectivas de expansão dos principais troncos de interligação em CC, sendo indicadas suas caracteristicas físicas e pontos de chegada.
COMPARAÇÃ DO PORTE DAS INTERLIGAÇOES
EM RELAÇÁO AOS SISTEMAS RECEPTORES
2000/2010
COMPARAÇÃO EM TERMOS ABSOLUTOS

REGIÄO RECEPTORA	2000			2005			2010		
	fluxo (MW)	CARGA (MW)	FLUXO/ CAPGA (\%)	FLUXO (MW)	carga (MW)	F:UXO carga (\%)	FLUXO (MW)	CARGA (MW)	FLUXO: CARGA (\%)
Nordeste	871	11.061	8	4.284	14.397	30	7.841	18.072	43
Sudeste/C. Oeste	4.524	43.447	10	11.227	54.516	21	18.961	66.393	29

COMPARAÇÃO EM RELAÇȦO AO ANO 2000

REGIẢO RECEPTORA	2005			2010		
	ACRÉSCIMO DE FLUXO (MW) (A)	ACRÉSCIMO DE CARGA (MW) (B)	AB (\%)	ACRESCIMO DE FLUXO (MW) (A)	ACRÉSCINIO de CARGA (MW) (B)	$\begin{aligned} & A B \\ & (\%) \end{aligned}$
Nordeste	3.336	3.336	100	6.970	7.011	99
Sudeste C. Oeste	6.703	11.069	61	14.437	22.946	63

Notas: - Para as regiőas Sudeste-C. Oeste estão sendo consideradas interligaçoes com as regiōes Norte e Sui do Pais. - Na recepto:a está sendo descontada a perda na interligação.

- Os vaiores de flixos correspondem a poténcia transmitida na hora da ponta nas interligaçoes.
- Os valores de carma correspondem a demianda máxima da rogiáo veceptora

Nas figuras 5.2-1 e 5.2-2, sáo apresentadas, de forma esquemática, as perspectivas de expansấo dos principais troncos de transmissấo em corrente alternada para o nivel de tensao de 345 kV e acimar bem como os elos de interligagão em cc para os anos 2000 e 2010 respectivamenten

TABELA 5.2-2
BRASIL

GREA EXPORTADORA	$\begin{aligned} & \text { GREA } \\ & \text { RECEPTORA } \end{aligned}$	DISTANCIAS MEDIAS (kn)	AND DO Inicio DE OPERACZO	$\begin{gathered} \text { CAPACIDADE } \\ \begin{array}{c} \text { MOHINAL } \\ \text { (WHI) } \end{array} \end{gathered}$
Marabá	8. Hor izonte	2.460	200	4.260
	R. de Janeiro	2.600	2005	4.200
	São Paulo	2.30	2005	4.260
	Recife	2.200	2065	4.50
Cuiabá	São Paulo	2.800	2605	4.800

Notas: - Nesta fase de estudo foram admitidos elos en corrente contínua na tensáo de $\pm 60 \mathrm{kV}$.

- A capacidade noninal indicada corresponde ao estágio final.

BRASIL PRINCIPAIS TRONCOS DE TRANSMISSÃO IGUAL OU MAIOR QUE 345 kV ANO 2000

PRINCIPAIS TRONCOS DE TRANSMISSÃO IGUAL OU MAIOR QUE 345 kV ANO 2010

6.1 Programa de Expansã̃o da Geracão

Existem no Pais dois grandes sistema interligados (Norte/Nordeste e Sudeste/Centro 0este/Sul). Fora destes dois, só existen cargas de algum porte em alguns sistemas isolados da região Norte.

A localizacão geográfica das principais usinas do parque gerador previsto para o ano 2001, para os grandes sistemas interligados e para os sistemas isolados, é apresentada em mapa anexo a este relatório.

6.1.1 Sistema interligado Sudeste/Centro Oeste /Sul

As tabelas 6.1.1-1 e 6.1.1-2 apresentam, para o sistema interligado SudestelCentro-oeste/ Sul, o cronograma de entrada em operacão e início de construgão das usinas que compốem o programa de expansão da geracão, no período 1987/2001.

O programa de obras apresentado permite o atendimento dos requisitos de energia do sistema interligado, porém com risco de déficit anual superior a 5% no bienio 1992/93.

A adequacão da capacidade de atendimento, de forma a não exceder o risco anual de déficit de 5% pode ser alcancada com um reforgo de cerca de 500 MWano no período marco/1992 a dezembro/i993.

Este reforco podera ser obtido pelas seguintes alternativas, que isoladas ou parcialmente combinadas, atinjam o montante de geracão necessário:

- antecipagão e inclusão de usinas hidrelétricas de pequeno e médio porte, como Igarapava, Grão-Mogol e Santa Rita, na área da Cemig, e conjunto Pardo (UHE's Carrapato, Barreiro e S. José), conjunto Turvo (UHE's Talhado e Foz do Preto), conjunto Sapucai (UHE's S. Rita, S. José, Anhanguera, Retiro, Monjolinho, S. Sebastião e S. Domingos), na área da Cesp;
- antecipafão e uma maior contribuigão na fase inicial de operacão de Angra II;
-- inclusão de unidades termelétricas utilizando derivados de petróleo, para as quais já existem estudos referentes à provável localizafâo no Estado de São Paulo.

A selefío da alternativa mais adequada a ser adotada será efetuada, em 1988, no âmbito do GCPS, em funcâo da nova projeqão dos requisitos do mercado, prazos de execuráo dos projetos propostos e os respectivos custos.

A tabela 6.1.1-3 apresenta os riscos de déficit no período 1988/97 para o sistema interligado Sudeste/Centro-0este/Sul, adotando-se o citado reforco. Como se observa o sistema apresenta-se atendido, dentro do eritério de 5% para o risco de déficit anual.

ANO	SUL	SUDESTE/CENTRO-OESTE
1988	1	-
1969	1	1
1998	1	1
1991	3	3
1992	4	4
1993	4	5
1994	4	5
1995	4	4
1996	3	4
1997	3	4

6.1.2 Sistema interligado Norte/Nordeste

As tabelas 6.1.2-1 e 6.1.2-2 apresentam o cronograma de entrada em operafão e início de construदão das usinas que compốem o programa do sistema interligado Norte/Nordeste.

A irrigafão pode ter uma significativa influencia nas condicôes de atendimento do mercado, na medida em que contribui para a elevafão da carga esimultaneamente provoca, em certos casos, uma redugão na disponibilidde de gerafão das usinas hidrelétricas.

A energia elétrica consumida na irrigacióo é considerada nas projefões de mercado. Quanto à oferta de energia, a retirada de água para atender às necessidades da irrigąão provoca

USINA		ESTADO		$\begin{gathered} \text { POTÈNCIA } \\ \text { PROGRAMADA } \\ (*) \\ (M W) \end{gathered}$	No. UNID. PROG	iniclo CONSTRUÇAO	DATA PRiMEIRA MAQUINA	DATA Última máo. PROGRAMADA	DATA RESERVATÓRIO	NVEST. TOTAL A AREA REALIZAR	
NOME	EACIA									1100 USS	$(k m)$
C.Dourada-AMP	Paranalba	G0	H	190							
Rosana	Paranapanema	SP/PR	H	320	4	-	1987	1988	-	45.1	69,0
Três frmãos	Tietè	SP	H	640	4	-	1987	1988	1988	56,1	220,0
Taquaruçu	Paranapanema	SP/PR	H	:500	${ }^{\text {a }}$	-	1989 1989	1990	1988	557.5	710,0
Jaguara-AMP	Grande	MG	H	212	,	-	1989	1990	1989	227,5	105,3
Santa Branca	Paraiba	SP	H	49	2	1987	1990	1990	-	-	33,0
Manso	Paraguai	MT	H	210	4	1987	1990	1990	\bigcirc	24,8	27,1
Porto Primavera	Paraná	SPIMS	H	1.800	18	1987	1991	1992	1991	284,0	387,
Corumbal	Paranaiba	GO	H	375	18 3	1988	1991	-1994	1990	1593,7	2.139,0
Nova Ponte	Paranaiba	MG	H	510	3	1988	1992	1993	1992	401,9	39,2
Angra II		RJ	T	1.245	3	1987	1992	1992	1991	440,8	443,0
Sapucaia	Paraiba	RJJMG	H	300	3	1989	1992	1992	\bigcirc	971,0	-
Simplicio	Paraiba	RJIMG	H	195	3	1989	1992	1993	1992	272,3	4,2
Anta	Paraiba	RJMMG	H	30	2	1988	1992	1993	$\stackrel{-}{ }$	195,7	5,3
Serra da Mesa	Tocantins-SE	GO	H	1.200	3	1988	1992	1993	1992	31,3	17,6
Miranda	Paranaíba	MG	H	390	3	1987	1993	1993	1991	820,1	1.782,7
Itaocara	Paraiba	RJ	H	210	3	1989	1993	1993	1992	223,4	50,6
Serra do Facăo	Paranaiba	GO	H	210	3	1989	1993	1993	1993	207,6	83,0
Cana Brava	Tocantins-SE	GO	H	480	4	1989	1994	1994	1993	174,2	298,0
Bocaina	Paranaiba	MG	H	200	2	1989	1994	1994	1993	332,5	100,5
Capim Branco	Paranaíba	MG	H	600	3	1989	. 1994	1994	1993	143,6	332,0
Igarapava	Grande	MG/SP	H	200	4	1989	1994	1994	1994	360,9	131,0
Foz Bezerra	Tocantins-SE	GO	H	360	2	1991	1994	1995	1994	125,4	52,0
Candonga	Doce	MG	H	70	1	1991	1995	1995	1994	2578	714,6
Picada	Paraíba	MG	H	100	2	1991	1995	1995	1995	77,3	1,2
Formoso	S.Fiancisco-MG	MG	H	300	3	1990	1995	1995	1994	106,9	47,3
Sobragi	Paralba	MG	H	110	2	1991	1995	1995	1994	337,1	301,5
Barra Peixe	Araguaia	MT/GO	H	280	4	1990	1995	1995	1995	94,7	2,3
Angra III	Aragua	RS	T	1.245	4	1987	1995	1995	1994	163,2	674,0
Rosal	Paraiba	RJJES	H	1.285 58	1	1987	1995	1995	-	1.140,0	-
Corumbá	Paranalba	GO	H	235	2	1991	1995	1995	1995	52,5	5,7
Funil	Grande	MG	H	164	2	1991	1996	1996	1996	293,4	110,0
Buriti	Jequitinhonha	MG	H	164 69	1	1991	1996	1996	1996	95,6	38,0
Terra Branca	Jequitinhonha	MG	H	120	2	1997	1996	1996	1995	69,2	1,3
Franca Amara!	Paralba	RJ/ES	H	32	2	1993	1996	1996	1995	81,4	145,0
Piraju	Paranapanema	SP	H	120	2	1993	1996	1996	1996	28,8	0,8
Peixe	Tocantins-SE	GO	H	1.112	2	1992	1996	1996	1996	144,7	14,0
Murta	Jequitinhonha	MG	H	1.90	1	1992	1997	1997	1996	709,0	940,0
Queimado	S.Francisco-MG	MG	H	113	1	1992	1997	1997	1996	117,6	27,0
Pilar	Doce	MG	H	89	1	1992	1997	1997	1998	83,6	35,0
Aimores	Doce	MG	H	300	3	1992	1997	1997	1996	123,9	14,3
Baú	Doce	MG	H	43	1	1995	1997	1997	1996	279,3	26,0
Bananeiras If	S.Francisco-MG	MG	H	417		1995	1998	1998	1997	69,2	4,2
Pompeu	S.Francisco-MG	MG	H	55	${ }^{\prime \prime}$	1994	1998	2000	1998	426,4	526,9
Almenara	Jequitinhonha	MG	H	94	2	1994	1998	1998	1998	61,9	20,0
Descalvado	Ribeira	SPPR	H	123	3	1994	1998	1998	1997	129,3	61,0
Mirador	Tocantins-SE	G0	H	106	2	1995	-1998	1999	1998	239,0	81,0
Paulistas	Paranaita	GOMM	H	60	2	1995	1999	1929	1998	121,8	28,0
P.Estrela	Doce	MG	H	85	2	1995	1999	1999	1998	102,7	211,0
Mundo Novo	Paranaiba	GOMG	H	67	2	1996	1999	1999	1998	85,5	2,5
Sảo Miguel	Grande	MG	H	61	2	1996	2000	2000	1999	96,6	144,0
Turmalina	jequitinhonha	MG	H	105	3	1996	2000	2000	1999	106,0	13,5
Sȧo Romåo	S.Francisco-MG	MG	H	540	2	1997	2001	2001	2000	118,5	60,0
C.Magalhȧes	Araguaia	MT/GO	H	260	2	1997	2001	2001	2001	554,0	740,0

[^0]TABELA 6.1.1-2
BRASIL
PROGRAMA DE EXPANSĀO DA GERAÇĀO - 1987/2001
REGIÅO SUL

USINA		ESTADO		POTÉNCIA PROGRAMADA (${ }^{+}$) (MW)	No. UNID. PROG.	inicio CONSTRUCAOO	DATA PRIMEIRA MÁQUINA	DATA Última máo. PROGRAMADA	DATA RESERVATORIO	INVEST. TOTAL A realizar	
NOME	BACIA									110^{6} US	$\left(\mathrm{km}^{2}\right)$
Itaipu	Paraná	PR	H	8.400							
P.Médici B	Para	RS	T	800	12		1987	1991		2800,0	1.350,0
J.Lacerda IV	-	SC	T	315	2		1987	1987			
Segredo	lguaçu	fris	H	315 1.260	4		1990	1990		300,6	
Jacui	-	RS	T	1.200 315	4	1987	1991	1992	1991	443,2	82,5
Candiota ill		RS	T	315	1		1991	1991	-	13,3	
D.Francisca	Jacui	RS	H	125	2	1987	1992	1992	\bigcirc	359,8	
itá	Uruguai	RSSS	H	1.620	6	1987	1992	1992	1992	136,2	20.0
Campos Novos	Uruguai	SC	H	1.620 726	6	1987	1992	1994	1992	961,6	138,5
Sto.Caxias	Iguaçu	PR	H	1.000	4	1989	1993	1994	1993	362,0	13,6
Machadinho	Uruguai	RS/SC	H	1.200	4	1988	1994	1995	1994	477,8	124,0
Maua	Tibagi	PR	H	472	2	1991	1994	1994	1993	764,0	262,0
Monjolinho	Uruguai	RS	H		2	1990	1995	1995	1995	293,2	114,0
Carvão-50MW		SC	T	200	2	1992	1995	1995	1994	63,5	5,9
Jataizinho	Tibagi	PR	H	192	3	1992	1995	1997	\bigcirc	348,9	
Cebolão	Tibagi	PF	H	$\begin{array}{r}192 \\ \\ \hline 194\end{array}$	3	1992	1996	1997	1996	132,1	31,7
Garabi-50\%	Uruguai	RS	H	98 900	2	1991	1996	1996	1995	124,8	25.7
Candiota IV	Ungua	RS	T	300	6	1989	1996	1997	1995	502,0	800,0
Barra Grande	Uruguai	RS/SC	H	880	3	1992	1996	1996	\therefore	518,9	.
For do Chopim	Iguaçu	PR	H	60	2	1993	1996	1996	1995	503,9	110,0
São Jerôimo	Tibagi	PR	H	444	2	1993	1997	1997	1996	49,0	0,5
Capanema	Iguaçu	PR	H	1.200	8	1993	1997	1997	1996	225,6	96,5
Pai Quere	Uruguai	RS/SC	H	288	2	1993	1997	1998	1996	484,6	87,0
Garibaldi	Uruguai	SC	H	430	2	1992	1997	1997	1997	210,	61,0
Tel. Borba	Tibagi	PR	H	128	2	1992	1997	1997	1996	240,1	99,0
Fundăo	lguaçu	PR	H	128	2	1993	1998	1998	1997	113,5	16,3
llha Grande	Paraná	PRMS	H	154 1.400	$\stackrel{2}{14}$	1994	1998	1998	1998	135.5	7,3
Candiota V		RS	T	1.400 315	14	1990	1998	2001	1997	1153,6	3.270,0
Carvåo 1-125MW		SC	T	125	1	1993	1998	1998	-	518,9	
São Roque	Uruguai	SC	H	360	2	1993	1998	1998	\cdots	205,9	-
Ivatuva	Ival	PR	H	144	2	1993	1998	1998	1998.	345,0	317.8
foz do Alonzo	Ivai	PR	H	138	2	1994	1999	1999	1998	139,3	31,9
Foz do Chapeco	Uruguai ${ }^{\text {- }}$	RS/SC	H	1.228	6	1994	1999	1999	1998	135.2	43,9
Carvảo 2-125MW		SC	T	125	1	1994	1999	2000	1999	849,0	129,6
Såo Joảo lvai	lvai	PR	H	98	2	1996	1900	1999	1999	205,9	-
Candiota VI		RS	T	315	1	1996	2000	2000	1999	107, 1	24,0
Xanxere	Uruguai	SC	H	25	2	1996	2000	2000	0	518,9	-
Voltáo Novo	Uruguai	SC	H	45	2	1997	2000	2000	2000	44.0	3,3
Ubaúna	lval	PR	H	122	2	1997	2000	2000	1999	70,4	1,5
8. Vista lval	Ivai	PR	H	96	2	1997	2001	2001	2001	140,0	25,0
Candiota VII		RS	T	315	1	1997	2001	2001	2001	97,0	30,0
ltapiranga	Uruguai	RS/SC	H	1.160	8	1997	2001	2001	-	431,5	-
					8	1995	2001	2001	2000	836,6	165,5

(*) A potência programada representa o acrescimo de poléncia no periodo 1987/2001.

IAULLA B.1.2.1
BRASIL
PROGRAMA DE EXPANSĀO DA GERAÇẢO - 1987/2001
REGIȦO NORTE

USINA		ESTADO	TIPO	POTÊNCIA PROGRAMADA (*) (MW)	No. UNID. PROG	iniclo CONSTRUÇAO	$\begin{aligned} & \text { DATA } \\ & \text { PRIMEIRA } \end{aligned}$MAQUINA	DATA Última máo. PROGRAMADA	DATA RESERVATORIO	INVEST. total a area REALIZAR	
NOME	BACIA									(10\%US\$)	$(\mathrm{km})^{\text {a }}$
Tucurui!	Tocantins-N	PA	H	1.980	6	-	1987				
Tucuruill	Tocantins-N	PA	H	1.320	4	1989	1987	1989	-	268,5	2.430,0
Cararao	Xingu	PA	H	6.300	12	1992	1999	1995	09	780,7	2.430,0
Santa Isabel	Araguaia	PA	H	660	3	19995	1999	2009	1998	3.316,5	1.225,0
			H	600	3	1995	2001	2001	2000	1.810,1	3.746,3

TABELA 6.1.2-2
BRASIL
PROGRAMA DE EXPANSÃO DA GERAÇÃO - 1987/2001
REGIẢO NORDESTE

USINA		ESTADO	TIPO	POTĖNCIA PROGRAMADA (*) (MW)	No. UNID. PROG.	inicio CONSTRUCAO	$\begin{aligned} & \text { DATA } \\ & \text { PRIMEIRA } \\ & \text { MAQUNA } \end{aligned}$	DATA Última máo. PROGRAMADA	DATA RESERVATÓRIO	INVEST. total a Area REALIZAR	
NOME	BACIA					.				(10US\$)	
Itaparica	S.Francisco-NE	BAPE	H	i. 500	6						
B.Esperança-AMP	Parnaiba	PI	H	126	- 2	1988	1988	1989 1989	1987	597,5	835,0
P.Cavalo	Paraguaçu	BA	H	300	- 2	1987	1989	1989	-	31.1	363,0
Xingo ${ }^{\text {a }}$	S.Francisco-NE	ALISE	H	3.000	2	1987	1992	1992 1994	9	204,3	163,3
Itapebi	Jequitinhonha-NE		H	617	3	1991	1995	1994	1992	1.551,9	85,0
Belém	S.Francisco-NE	BAPP	H	672	6	1992	1997	1996	1995	458,2	65,0
Pedra Branca	S.Francisco-NE	BAPP	H	1.088	7	1992	1998	1998	1997	.717,6	338,0
Turbina a Gás	- :	AL	T	120	6	1988	1998	1999	1997	1.290,3	1.352,5
Turbina a Gás	- \quad -	AL	T	200	10	1991	1988 1931	1988	-	60,0	-

(*) A potência programada representa o acréscimo de potência no perlodo 1987/2001.
uma redugão na sua disponibilidade. A quantificacão desta influencia deve levar em conta a localizacão dos projetos de irrigagão, a tecnologia utilizada com o consequente consumo de água e hipóteses de eventual retorno de parcela desta água para o rio.

As avaliacôes efetuadas até agora evidenciaram que a influência da irrigafáo na disponibilidade de geracão só é significativa na bacia do São Francisco. Desta forma, a influência da irrigaḉo na disponibilidade de geragão foi considerada apenas para o sistema interligado Norte/Nordeste.

0 Programa de Irrigacão do Nordeste - Proine estabeleceu como meta, a ser alcangada em 1991, a irrigafão de uma área de cerca de 1.000 .000 ha na regiấo Nordeste, dos quais cerca de 530.000 ha localizam-se na bacia do rio São Francisco, a montante da barragem de Sobradinho, produzindo uma perda de energia que influi decididamente nas condiấes de atendimento do sistema.

A hipótese adotada, para a quantificagão da influência da irrigacão ao sistema Norte/ Nordeste foi de um desenvolvimento mais moderado do programa a montante de Sobradinho, de forma a se alcangar os 530.000 ha em 1995, partindo-se de um valor estimado de 53.000 ha em 1988.
As vazóes retiradas foram calculadas a partir de um indice médio de $0,35 \mathrm{~m} 3 / \mathrm{s} / 100 \mathrm{ha}$ h o que implica num valor de $19 \mathrm{~m} 3 / \mathrm{s}$ em 1988, atingindo $186 \mathrm{~m} 3 / \mathrm{s}$ em 1995 , o que resulta numa redugão de geracão de cerca de 500 MWano neste último ano.

Para compensar os efeitos da perda de capacidade de geragão devido à irrigacão, foram adotadas as seguintes modificafôes no cronograma de obras, em relacão à versão preliminar do plano 2010:

- antecipacão de junho de 1993 para outubro de 1992 da UHE Xingó;
-- antecipafão de 1996 para 1995 da UHE Itapebi
- operafão no nivel 74 m da UHE Tucuruí, a partir de 1992;
- atualizacão dos cronogramas físicos das hidrelétricas de Boa Esperanca e Pedra do Cavalo:
- inclusấo de uma usina termelétrica a gais de 120 Mw em junho de 1988.

Estas alteracöes na programacio de obras fazem com que as condicöes de atendimento do sistema Norte/Nordeste, avaliadas através do risco de déficit anual, fiquem pouco acima do critério de 5% nos anos de 1992/93 e 1997.

A adequação do sistema ao nivel de 5% de risco, nestes anos, pode ser obtido através de uma das duas alternativas abaixo:

- antecipacio do aumento da capacidade de interligaraio Norte/Nordeste, en cerca de 400 MW, no início de 1992 , elevafão do nível de gerafão do parque térmico existente através da modificacão das regras de operacão:
- inclusão de unidades térmicas consumindo gás natural ou derivados de petróleo, na faixa de 200 MW , a partir de 1991, e elevagão do nível de gerafáo do parque térmico através da modificagão das regras de operacão.

A escolha da melhor alternativa deverá ser realizada, em 1988, no âmbito do GCPS, inclusive com a consideragão da atualizacão das projeqö́s de mercado.

As condigóes de atendimento ao mercado podem ser avaliadas através da tabela 6.i.2-3, onde estão apresentados os riscos de déficit, no período 1988/97, para a primeira alternativa. Como se observa, o sistema apresenta-se atendido dentro do critério de 5% para o risco de déficit anial, a menos de 1988.

TABELA 6.1.2-3
SISTEMA INTERLIGADO NORTE/NORDESTE RISCO AMMAL DE DÉFICIT (\%)

1988/1997

Alio	MORTE	HOROESTE
1988	1	9
1989	0	2
1990	1	1
1991	2	2
1992	5	5
1993	3	4
1994	2	3
1995	3	4
1996	2	3
1997	3	4

6.1.3 Sistemas eletricamente isolados

Em 1985, os sistemas isolados, concentrados principalmente nas regiôes Norte e Centro-Deste, foram responsáveis por $1, i \%$ do mercado total de energia elétrica, consumindo 1,8 TWh. Alimentados fundamentalmente por unidades geradoras a derivados de petróleo, utilizaram ao longo do ano 295.000 t de óleo combustivele $328 \mathrm{milhöes}$ de litros de óleo diesel, representando, respectivamente, $3 \% \in 1,7 \%$ do consumo nacional destes dois energéticos.

O conjunto de localidades hoje supridas por geracão local, em fuņão das características e das solufôes alternativas de atendimento, podem ser divididas em tres grandes grupos:

- sistemas elétricos de capitais de Estados e Territórios localizados exclusivamente na regiấo Norte;
- sistemas envolvendo uma ou mais localidades, sedes municipais, distritos, vilas e povoados;
- grandes complexos industriais (agro-indístrias e mineracóes), geralmente autoprodutores, que não serão aqui tratados.

Os sistemas isolados do primeiro grupo totalizaram, ao final de 1986 , uma potencia instalada de 545 MW , com uma gera¢̃o bruta associada, naquele ano, de 1.708 GWh.

A tabela 6.1.3-1, a seguir, apresenta o programa de obras de geracão no período 1987-1996 para os sistemas isolados do primeiro grupo, e algumas hidrelétricas de médio porte, previstas para sistemas do segundo grupo.

A partir deste programa, todas as capitais de Estados e Territórios da região Norte passarão a ser supridas por usinas hidrelétricas, complementadas ou não por unidades termelétricas.

0 segundo grupo é constituido por 229 sistemas
isolados, que, hoje, possuem uma capacidade instalada de $361,5 \mathrm{MW}$, dos quais $\mathbf{1 6 \%}$ são constituidas por hidrelétricase 84% por termelétricas.

A dimensão de mercado e o nivel de incerteza quanto à sua evolucão não permitem que seja formulado um programa de obras para estes sistemas num horizonte maior do que 5 anos, cabendo o estabelecimento de uma politica de acompanhamento, de modo que o desenvolvimento das comunidades por eles atendidas não venha a ser prejudicado por insuficiencia de oferta de energia. Até i991, é previsto que o nímero de sistemas isolados diminua para 194, com um mercado total de cerca de 432,4 MWh por ano. A tabela 6.1.3-2 mostra o nímero de unidades e a potencia das principais usinas de pequeno porte programadas para o periodo 1987/1991.
6.2 Programa de expansão do sistema de
transmissã̃o e distribuicão
A configuracão do sistema de transmissão, prevista para 1996, para os grandes sistemas interligados (Norde/Nordeste e Sudeste/Centro Oeste Sul), e os principais sistemas isolados da regiáo Norte, é apresentada, de forma simplificada, em mapa anexo a este relatório.

Como comentário geral relativo à transmissão, pode-se afirmar que o sistema planejado até 1996 apresenta reduzidas margens de tolerância com relacáo as datas previstas para implantacáo das instalacốes correspondentes. Assim sendo, evetuais atrasos nos programas de obras podem submeter o sistema a inadequadas condigöes de operagão e, até mesmo, a indesejadas medidas de racionamento e cortes de carga.

No que concerne à distribuifão (urbana e rural), o detalhamento de metas físicas foi estabelecido para um horizonte mais proximo, até 1991, embora se tenha avaliado os investimentos a mais longo prazo. As tabelas 6.2-1 e 6.2-2 apresentam as metas previstas para o período 1987/1.991.

TABELA 6.1.3-1
BRASIL
PROGRAMA DE EXPANSĀO DA GERAÇẢO - 1987/1996 PRINCIPAIS SISTEMAS ISOLADOS

USINA		ESTADO		POTENCIA PROGRAMADA (MW)	No. UNID. PROG.	inicio CONSTRUÇȦO	DATA PRIMEIRA MÁOUINA	DATA Última mÁ. PROGRAMADA	DATA RESERVATORIO	INVEST. total a Area REALIZAR	
NOME	BACIA									(1095S\$)	$\left(\mathrm{km}{ }^{\text {a }}\right.$)
Rio Branco-GAS	-	AC	T	30	3	1988	1988	1989	-	27,9	-
Manaus-GAS	\cdots	AM	T	104	4	.	1988	1988	.	15,8	-
Balbina	Vatumá	AM	H	250	5	-	1988	1989	1987	155,1	2.346,0
Santana(Macapa)	-	AP	T	30	3	1987	1988	1989	.	35,4	
Porto Velho-GAS	\cdots	RO	T	60	3	1987	1988	1988	.	5,4	.
Samuel	Madeira	RO	H	217	5	18	1989	1990	1988	220,8	647,8
Manaus II	-	AM	T	50	2	1988	1990	1990	-	28,0	64,0
Caiabis	Teles Pires	MT	H	30	3	1987	1990	1991	-	50,8	-
Apiacás	Apiacás	MT	H	19	4	1987	1990	1991	1989	21,5	2,9
Curuá-Una-AMPL	Curuat-Una	PA	H	10	1	1988	1990	1990	S	16,0	78,0
Aparai	Maicuru	PA	H	35	4	1987	1990	1991	1990	80,5	42,1
Avila	Avila	RO	H	28	4	1988	1990	1991	1990	81,8	9,5
Paredão	Camaquả	RR	H	27	3	1988	1990	1991	1990	73,0	5,6
Rondonia(Tapanả)	-	RO	T	50	2	1988	1991	1991	O	100,0	5,0
Coar.Nunes-AMPL	Araguari	AP	H	30	1	1989	1992	1992	-	26,9	23,3
Cach.Porteira 1	Trombetas	PA	H	700	4	1990	1995	1996	1995	672,0	911.0
Jiparanál	Jiparaná	RO	H	512	4	1991	1996	1997	1995	442,9	1.000,0

TABELA 6.1.3-2
BRASIL
NOMUERO DE UNIDADES E POTÊMCIA A INSTALAR SISTEMAS ELETRICAMENTE ISOLADOS DE PEOUENO PORTE 1987/1991

ESTADO	USINA								tOTAL (kU)
	U H		PCH		PCT-L		60		
	Ho DE UNIDADES	POT. (kW)	No DE UNIDADES	POT. (WV)	Ng DE UNIDADES	POT, (kN)	$\begin{aligned} & \text { No DE } \\ & \text { OMIDADES } \end{aligned}$	POT. (kH)	
Anazonas	-	-	2	2.600	4	3351			
Pará	5	45.000	-	2.60	-	33.50	Diversos	11.288	
Rondônia	1	7.000	4	9.500	-	-	Diversos	34.825	75.825
Roraima	-	.	3	3.800	-	-	Diversos	68.332 5.216	84.832 9.016
Acre	-	-	-	3.80	-	-	Diversos	5.216 9.860	9.016 9.800
Amapá	-	-	2	10.000	-	-	diversos	9.860 2.428	9.800 12.428
Goiás	1	3.040	-	10.0	-	-	Diversos	2.428	12.428 3.040
Mato Grosso	5	65.449	-	-	-	-	Diversos	81.400	3.04 146.849
Misto 6. do Sul	1	4.00	-	-	1	1.500	Oiversos		146.840 5.500
Total	13	124.44	11	25.900	5	35.000	Diversos	209.201	394.541
UHE - Usina hidrelétrica; PCH - Pequena central hidrelétrica; PCT-L - Pequena central térrica a lenha; GO - Grupo diesel motor/gerador.									

TABELA 6.2-1
BRASIL
METAS DA DISTRIBUICÃO URBANA 1987/1991.

ITEM	EXTENSAO km	TRANSFORMACAKO	
		UNIDADES	MUA
Rede aérea	304.750	254.400	10.630
Rede subt.	920	1.300	570

TABELA 6.2-2 BRASIL METAS DO PLANO DE ELETRIFICACÃO RURAL $1.987 / 1991$		
REGIAO No	DE PROPRIEDADES A ELETRIFICAR	EXTENSAKO DAS REDES km
Sul	183.000	75.200
Sudeste	226.000	106.900
C. Deste	26.000	34.200
Nordeste	114.000	79.100
Norte	7.000	7.300
Total	556.000	302.700

Z._-RERSEECIIYAS_ECQNâMICQ=EINANCEIRAS

7.1 Alguns conceitos básicos

Diante da predominância da geracão hidrelétrica no País, o Setor Elétrico é extremamente representaram, nos últimos pessoal, materiais e combustiveis paga pelos consumidores and cerca de 30\% da arrecadacao tarifaria Imposto Compulsório (EC).

O investimento remunerável é constituido pelo valor dos bens e instalafões em servico, inclusive juros durante a construcão e deduzida a reserva de depreciacão, pelo capital de giro e"conta de resultados a compensar" (CRC). Seu valor contábil é corrigido mensalmente pela variacão da OTN (anteriormente, da ORTN).

- regime da concessão prevê a cobertura pela receita do "custo do servico" da concessionária. Este custo, aprovado anualmente pelo poder concedente (DNAEE), compreende, além das despesas operacionais, das quotas de reintegrafão e da quota de reversão, 10 a 12% do valor do investimento remunerável, a título de remuneracão do investimento. Quando a remuneracão do investimento é inferior ao mínimo legal, a perda da concessionária é acrescida à conta de resultados a compensar (CRC). Desde 1977 a taxa de remuneracão é inferior ao mínimo legal (10%). Em conseqiência, as concessionárias vêm registrando perdas que se acumulam na CRC, cujo valor, em 1987, é de cerca de USS 7.5 bilhöes.

Com base nestes conceitos, são definidos os seguintes indices, utilizados para uma análise global de desempenho econômico-financeiro do Setor Elétrico:
-- Taxa liquida de retorno - razão entre a arrecadação tarifária, subtraida as despesas
operacionais e as quotas de reintegragão, e o investimento remunerável, subtraída a CRC.

- Taxa de remuneracão do investimento - razão entre a remuneracão do investimento e o investimento remunerável, subtraida a CRC.
-. Taxa de investimento - razão entre o investimento anual e o investimento remunerável, subtraida a CRC.
- Taxa de autofinanciamento - razão entre os recursos disponíveis para investimento (arrecadagão tarifária, subtraída do servico da divida e das despesas operacionais) e o investimento remunerável, subtraída a CRC.
" Taxa de juros de referência - corresponde à multiplicafão da "Libor", somada ao valor do "spread", pela razão entre as variacóes. durante o ano, da taxa de câmbio e da OTN (anteriormente, da ORTN).
- Arrecadacão tarifária média - racão entre a arrecadacão tarifária e a venda total de energia elétrica.

7.2 Evolufão econômico-financeira do setor elétrico

O Setor Elétrico é um dos maiores investidores do País. A tabela 7.2-i mostra que o seu investimento cresceu praticamente sem interrupráo entre 1970 1982, passando de 1,7 a 4,6 bilhöes de dólares, representando em média cerca de 2% do PIB (Produto Interno Bruto) e 9% da FBCF: A partir deste ano, o investimento diminuiu fortemente, por razôes que serão analisadas adiante.

A tabela 7.2-2 mostra a evolucão dos principais indicadores econômicofinanceiros do Setor Elétrico, entre 1968 e 1986, em trés periodos, que corresponderam, aproximadamente, aos ciclos da economia brasileira. Por ela, pode-se notar a progressiva deterioragão da situafão econômico-financeira do setor.

TABELA 7.2-1
 BRASIL

INVESTIMENTOS DO SETOR DE ENERGIA ELÉTRICA
1970/1986
[10 0^{9} US\$(85)]

ANO	PIB		FBCF		INVESTMENTOS DO SETOR DE ENERGIA ELÉTRICA		FBCF/ PIB	INVESTMMENTOS DO SETOR DE ENERGIA ELETRICA PIB	INVESTIMENTOS DO SETOR DE ENERGIA ELÉTRICA FBCF	CONSUMO TOTAL DE energia elétricall)				
	VARIAÇAO		VABIACAO		VARIACȦO									
							VARIACAAO							
	10° US\$	\% 8.8.			10° US\$	\% a.a.		$10^{\circ} \mathrm{US}$	\% a.a.	\%	\%	\%	TWh	\% a.a.
1970	90,6	-	18,6	-	1,7	-	20,5	1,9	9,1	38,0	-			
1971	100,8	11,3	21,3	14,5	1,9	11.8	21,1	1,9	8,9	42,8	12,6			
1972	113,0	12,1	23,8	11,7	2,2	15,8	21,1	1,9	9,2	47,9	11,9			
1973	128,9	14,0	29,9	25,6	2,3	4,5	23,2	1,8	77	54,8	14,5			
1974	140,5	9.0	35.7	19,4	2,6	13,0	25.4	1,9	7,3	61.5	12,9			
1975	147,8	5,2	39,6	10,9	3,0	15.4	26,8	2.0	7.6	67,9	10,5			
1976	162,3	9,8	37,5	-5,3	3,3	10,0	23,1	2,0	8,8	77,2	13.7			
1977	169,8	4,6	37,4	0,0	3,6	9,1	22,0	2,1	9,6	86,9	12,5			
1978	177,9	4,8	40,2	2,5	4,1	13.9	$\times 22.6$	\% 2,3	10,2	96,8	11,4			
1979	190,7	7,2	42,9	6,7	4,0	-2,4	22,5	2.1	9,3	109,2	12,8			
1980	208,1	9,1	46,6	8,6	3.9	-2,5	22,4	1,9	8,4	120,3	10,2			
1981	201,2	-3,3	44,9	-3,6	4,3	10,3	22,3	2,1	9,6	123,7	2,8			
1982	203,0	0,9	41,0	-8,7	4,6	7,0	20,2	2,3	11,2	131,5	6,3			
1983	197,9	-2,5	31,1	$-24,1$	3,6	-21,7	15.7	1,8	11,6	140,4	6.8			
1984	209,2	5,7	34,5	10,9	3,3	-8,3	16,5	1,6	9,6	157,2	11,9			
1885	226,6	8,3	40,8	18,3	3,6	9,1	18,0	1,6	8,8	172,3	9,6			
1986(2)	245,2	8,2	50,3	23,4	3,4	$-5,6$	20,5	1,4	6,8	185,6	7.7			

(1) Inclui Autoprodutores;
(2) Valores preliminares.

TABELA 7.2-2
 BRASIL
 SETOR DE ENERGIA ELĖtRICA
 EVOLUCZO DOS PRINCIPAIS INDICADORES
 ECOWbaico-financeiros
 1968/1986

INOICADORES	PERiODOS		
	1968/1975	1976/1978	1979/1986
Taxas Médias de Crescinento (\% a, a.)			
Demanda	11,8	11,9	7.0
Investinento	18,4	11,8	7,1 $-2,7$
Tarifa	6,9	-5,3	-4,3
Taxa Liquida de Retorno (\%) Remunerafảo	16,6 9,5	-18,9	13,1 5
RGR, IUEE, EC	7,1	8,5 10,4	5,9 7,2
Taxa de Juros de Referência (\%)	4,5	7,4	19,6
Taxa de Investimento (\mathbf{z})	24,9	34,5	23,6
Taxa de Autof inanciamento (\%)	14,3	15,3	2,2,8 $-2,8$

7.3 0 Plano de Recuperacão Setorial (PRS)

A gravidade da situagão em que se encontrava em 1985 levou o Setor Elétrico, a elaborar o Plano de Recuperagão Setorial (PRS), aprovado pelo Governo Federal em novembro deste mesmo ano, com os seguintes

- adequar o Setor Elétrico ao cumprimento das metas e objetivos expressos no I PND da Nova Repíblica, assegurando o fornecimento de energia elétrica essencial ao desenvolvimentoy
- promover de imediato, com precedencia a outros objetivos, a recuperagão econômica e financeira do Setor;
- dotar as entidades envolvidas na problemática do Setor Elétrico a nivel setorial (MME, Eletrobrás, DNAEE, Empresas concessionárias) e a nivel governamental (Seplan, Ministerio da Fazenda), além de órgãos de financiamento (BIRD, BID) e fornecedores (empreiteiros, fabricantes de equipamentos), de referencial confiável que permita um ordenamento de acóes conseqiiente passível de acompanhamento ao longo do tempo, afôes essas que contemplem, na medida do possivel, os legítimos interesses desses vários grupos de agentes.

Dentre as medidas propostas destacam-se as seguintes:
-- aumento das tarifas, visando a melhorar as taxas de retorno e promover a racionaliza̧ão e conservagão no uso da energia elétricay - capitalizafáo do Setor Elétrico em complementacão ao insuficiente autofinanciamento:

- ressarcimento pelo Governo Federal dos investimentos realizados nas usinas nucleares de Angra I, II e III, excedentes aos custos da alternativa hidrelétrica deslocada;
- programacão dos investimentos em ritmo compativel com a recuperacão econômico-financeira do Setor.
- aumento da eficiencia e produtividade das concessionarias.

0 PRS foi revisto em 1986 e hoje se constitui no instrumento de planejamento a curto prazo do Setor Elétrico, e como tal deverá ser atualizado anualmente.

7.4 Perspectivas para o período 1987/1996

7.4.1 Programa de investimentos

A realizacão do programa de obras previsto no Plano 2010 implica o investimento médio anual, incluindo Itaipu, en dólares de 1986, de USS 6,4 bilhöes/ano no período 1987/1991 e de US5 7,5 bilhöes/ano período 1992/1996, de acordo com a tabela 7.4.1-1. Observe-se que os investimentos em geragão referen-se apenas à construgão de novas usinas, não estando incluídos os gastos em manutencão e recuperafão das usinas existentes.

Do primeiro qiiinqijênio para o segundo, o programa de investimentos cresce cerca de $\mathbf{1 7 \%}$ enquanto a demanda cresce $39,3 \%$. Conseqiientemente, desde que a receita tarifária média seja, em termos reais, constante ou crescente, a taxa de autofinanciamento tende a crescer. Ao mesmo tempo, observa-se sensivel declínio na taxa de investimento, que se reduz de $18,0 \%$ no qiiinqiếnio 87/91 para $12,9 \%$ em 92/96.

TABELA 7.4.1-1
BRASIL
SETOR DE ENERGIA ELÉTRICA
programa de investimentos
1987/1996
[199 US5(86)]

ESPECIFICACZO	hídia amual de inestimentos			
	1987/1991		1992/1996	
	(uss)	(x)	(uss)	(z)
Gerafa	3,4	53,1	3,6	48, ${ }^{\text {\% }}$
Transuissão	1,7	26,6	2,1	28,8
Distribuicão	0,9	14,1	1,3	17,3
Instalasîes Gerais	0,4	6,2	0,5	6,7
Total	6,4	100,0	7,5	100,0

Este quadro define um programa de expansáo que apresenta caracteristicas bastante favoraveis a um equacionamento economicofinanceiro adequado uma vez que, proporcionalmente ao porte do Setor Elétrico, a necessidade de recursos tarifarios para financiar a expansão se reduz ao longo do tempo.
7.4.2 Evoluqão econômico-financeira

- Plano de RecuperaGão Setorial contém as medidas indispensáveis para que o Setor Elétrico ultrapasse a crise em que está mergulhado.

Estas medidas visam a restabelecer as condicôes para uma expansão econômico-financeira equilibrada e têm como objetivo essencial corrigir a distorfão atual, onde a taxa liquida de retorno é inferior à taxa média ponderada dos juros dos recursos captados, correaáo indispensavel para reforfar a capacidade de investimento do setor Elétrico, cujo programa de expansâo vem sendo mantido em niveis inferiores aos necessários.

Sob o ângulo financeiro, é necessário a curto prazo, o reescalonamento da dívida setorial, bem como a transformafão em divida de longo prazo dos recursos obtidos através dos Avisos 9 e 10 do Ministério da Fazenda. Qualquer alternativa financeira deverá, entretanto, ter um custo inferior ao retorno dos ativos, sen o que só se estaráadiando os problemas atuais.
Em paralelo ao processo de recuperafão das tarifas, é essencial garantir ao Setor os recursos comprometidos pelo Governo federal, seja sob a forma de aporte de capital, seja sob a forma de ressarcimento dos investimentos com as usinas nucleares excedentes ao custo das hidrelétricas deslocadas.

Com as medidas preconizadas no PRS e com a reducão relativa do volume de investimentose, consequientemente, da taxa de investimento, o Setor Elétrico, no período 1992/1996, deverá recuperar sua capacidade de autofinanciamento e de mobilizacão dos recursos complementares necessários ao financiamento do seu programa de investimentos.

A partir de 1991, admite-se que, cessada a fase de recuperacão, o Setor passará a pagar dividendos aos Governos Estaduais e ao Governo Federal, deixando de contar com a reinversão automática. Esta condifã́o propicia a ampliagão do quadro de acionistas, permitindo a "abertura" efetiva do capital das empresas..

A garantia de uma taxa de retorno satisfatória permite ainda prever-se um padrão de financiamento baseado na associacão voluntária dos capitais disponiveis, que, através das agencias de financiamento ou mesmo sob novas formas de participacão, estarão dispostos a associarse aos projetos apresentados pelo Setor.

A arrecadaçõo tarifária assume papel fundamental na garantia de uma taxa de retorno satisfatória. Por outro lado, é indispensável que a tarifa brasileira seja competitiva em relacão aos padrôes internacionais. Face às caracteristicas do sistema elétrico brasileiro, o principal componente dos custos decorre do ativo imobilizado. Deste modo, é necessario um permanente esforqo de racionalizacĩo e reducão nos custos dos empreendimentos, hoje fortemente afetados por aumentos nos custos financeiros, decorrentes de dilatafôes nos prazos de execugão das obras. a recuperagão da capacidade financeira do Setor constitui uma etapa fundamental do processo de diminuifão de seus custos, pois, con uma programacão financeira adequada, haverá de imediato uma redufáo das despesas financeiras e mesmo dos custos diretos, uma vez que os riscos incorporados aos preqos contratuais podem ser reduzidos.

Nas simulacôes realizadas foram adotadas duas restricöes básicas:

- Índice de equilíbrio econômico (IEE) igual ou superior à unidade.

Este índice é a razão entre a taxa média do retorno do ativo e da taxa de juros de referência, onde a taxa média do retorno do ativo é o resultado da média ponderada dos seguintes componentes:

- taxa de retorno dos investimentos em operacão;
- taxa de retorno dos investimentos em construcão;
- taxa de dividendos do capital aplicado em Itaipu;
- taxa de juros dos empréstimos a Itaipu.
- Indice de recursos extra-setoriais inferior a 60%.

Este índice é a razão entre empréstimos extra-setoriais para investimento e o investimento total. No cálculo deste indicador, ad-mite-se que a parcela de amortizafão do principal da divida que ultrapassa o valor das quotas de reintegracáo do ativo imobilizado é refinanciada. Em conseqiiencia, este valor é abatido dos empréstimos extra-setoriais, permitindo calcular-se o montante que efetivamentéé captado para financiar o programa de investimentos. É prática usuai adotar-se o limite máximo de 70% para este indice. A fim de deixar alguma margem para cobertura de incertezas, dentre as quais uma possivel aceleragão da demanda e conseqiente aceleragão dos investimentos na próxima década, foi adotado o limite de 60%.

Uma condicionante de extrema importância é a taxa de juros. Nas simulacôes adotou-se como hipótese básica uma taxa média de juros de $11,5 \%$ que representa um valor bastante elevado em se tratando de taxa real, mas reflete a realidade dos custos financeiros debitados ao Setor, que compreendem, além da taxa básica, "spread" e outras taxas adicionais, a parcela do imposto de renda das remessas de juros que, por tradicão de mercado, são arcadas pelo tomador. Cabe lembrar que, na fixaç̃o da taxa de câmbio, a inflação externa não tem sido consierada, transformando as taxas nominais de juos do mercado internacional em taxas reais para o Setor Elétrico.

Alternativamente, supôs-se uma reducão da taxa de juros de $11,5 \%$ para 9% que corresponde a eliminačáo da parcela do imposto de renda das remessas de juros para o exterior.

A tabela 7.4.2-i mostra a evolugão dos indicadores econômicofinanceiros para as seguintes alternativas:

- Alternativa I: taxa de juros de referencia $11,5 \%$;
- Alternativa II: taxa de juros de referencia $9,0 \%$

TABELA 7.4.2-1
BRASIL
SETOR DE EMERGIA ELÉTRICA
EYOLUCZZO DOS PRINCIPAIS INDICADORES ECONÔHICO-FINANCEIROS
1987/1996

ESPECIFICAC80	alternativa I		alternativa il	
	1987/91	1992/96	1987/91	1992/96

Taxa Liquida de Retorno(\%)	14,2	14,4	12,9	12,9
Taxa de Juros (\%)	11,5	11,5	9,1	9,0
Taxa de Investimento (\%)	18,0	12,9	18,8	12,9
Taxa de Autofinanciamento (\%) Arrecadasảo Tarifária	4,0	6,4	4,2	6,3
Média (USS(Dez/86)/N性) indice de Recursos	52,6	62,3	50,3	59,2
Extra-setoriais (\%)	56,7	54,1	55,7	55,9

A análise desta tabela mostra a necessidade do rápido aumento do nivel tarifário médio, que, em 1987 fol de uss $41,2 /$ MWh, a fim de que possa ser atingido o valor médio previsto para o período 1987/91, que deverá ser de US\$ 52,6/ kWh na alternativa I.

Uma vez feita a recuperăão tarifária, as perspectivas do qiinqiuênio 1992/96 são satisfatórias, permitindo, com pequena elevacão de tarifa, a realizafâo do investimento médio anual de uss 7,5 bilhöes, havendo mesmo espago para um eventual aumento deste nivel como conseqiiencia de taxas de crescimento maiores da economia, desde que mantida a elasticidade-renda do consumo de eletricidade. Naturalmente, um aumento nos custos unitarios dos empreendimentos poderia vir a comprometer este quadro satisfatório.

7.5 Conclusốes

- Oprograma de obras previsto no Plano 2010 que corresponde a investimentos médios anuais, em dólar de 1986, de USS 6. 4 bilhöes/ano, no periodo 1987/91, e de US\$ 7,5 bilhöes/ano, no período 1992/96, é economicamente viável com uma arrecadafão tarifária média competitiva em termos internacionais. Em contrapartida, é necessairio que os custos dos investimentos sejan igualmente competitivos, mantendo-se nos niveis previstos no plano.
- O quadro econômico-financeiro, cuja análise foi feita considerando o Setor Elétrico de modo consolidado, pressupôe implicitamente a existência de mecanismos institucionais que viabilizem a alocagão dos recursos setoriais, de modo a garantir o atendimento da demanda através das alternativas de menor custo, minimizando desta forma o preqo a ser pago pelo consumidor.
- A garantia de uma taxa de retorno satisfatória para os investimentos frente à taxa de juros é condicão indispensável não só a equilíbrio economico-financeiro do setor, como também para que os prefos dos servigos de energia elétrica sejam um sinal eficaz na alocacâo de recursos dentro da economia nacional.
- A recuperacão econômico-financeira do Setor e orestabelecimento de niveis satisfatórios de rentabilidade permitem prever a mobilizacão voluntaria da poupanca
disponível no financiamento dos projetos por ele apresentados.
-- A garantia de uma taxa de retorno satisfatória permite ainda considerar a abertura efetiva do capital das empresas e o desenvolvimento de novas formas de participafâo do setor privado no financiamento dos projetos do Setor.
- A situacão econômico-financeira no início da projefão exige a continuidade do plano de Recuperacão Setorial-PRS, cujas principais medidas podem ser sintetizadas em:
- recuperagão tarifária visando melhorar as taxas de retorno e promover a racionalizaøão no uso da energia elétrica;
- capitalizăão do Setor Elétrico em complementacão ao insuficiente autofinanciamento;
- ressarcimento pelo Governo Federal dos investimentos realizados nas usinas nucleares, excedentes aos custos da alternativa hidrelétrica deslocada;
- programačio dos investimentos em ritmo compativel com a recuperacão econômico financeira do Setor:
- aumento da eficiência e produtividade das concessionárias.
- Sob o ângulo financeiro, é necessário o refinanciamento parcial da divida setorial através dos mecanismos de "roll over", bem como a transformacảo em divida de longo prazo dos débitos correspondentes aos Avisos 9 e 10 do Ministério da Fazenda.

8.1 Condicionantes da revisão institucional

A revisão institucional do Setor Elétrico foi motivada por uma série de problemas que refletem as inadequacöes, quer dos seus regulamentos, quer da sua organizacão. Essas disfuncö́s, ampliadas pelas circunstâncias politicas e econômicas que o Pais atravessa, evidenciaram a necessidade de adequar à atualidade, bem como ao eenário que se afigura para os próximos anos, os métodos e mecanismos que deverão reger e viabilizar o desempenho do Setor, em benefício da sociedade.

Essa revisão está sujeita a condicionantes de três ordens diferentes, as vezes conflitantes, na maioria delas complementares, a saber: o interesse dos consumidores, a natureza do Setor e os interesses de grupos especificos.

A orientagão dessa revisão reside no equacionamento das diferentes opgöes quanto à ponderacão daqueles condicionantes. Embora difícil, pela subjetividade envolvida, será necessário identificar, em cada um desses grupos condicionantes, seus elementos mais relevantes epermanentes para que as solufóes propostas encontrem apoio amplo e aceitacão duradoura.

- interesse dos consumidores é o acesso ao servico de energia elétrica de padrão compativel com suas necessidades. O critério previsto na legislagão vigente, de "servigo pelo custo", e a recomendagão de que tal custo deva ser o mínimo compativel com a qualidade do servico prestado visam a esse interesse.

Pela multiplicidade de aplicacöes que a eletricidade encontra cada vez maisy os consumidores dependem dessa modalidade de energia para produzir eficientemente os bense servigos de que necessitamepara atender seus requisitos básicos de conforto, lazer e seguranga. Consequentemente, o acesso à energia elétrica adquiriu caráter essencial, realfado pela dificuldade ou mesmo impossibilidade de subs-titui-la por outra forma de energia. Esta característica confere ao servico de energia elétrica una conotagão de interesse social prioritário que tem de estar presente em qualquer legislarão que embase a atuac̃o do Setor Elétrico.

Por outro lado, sua natureza capital-intensiva e fato de que, na etapa de geracão, há um processo de transformacão de alguma forma de energia em eletricidade, conferem ao Setor Elétrico a caracterítica de indústria basica. Tal como outros setores que demandam pesados investimentos, este oferece significativas oportunidades de economia, quer pelos aumentos de escala obtidos pela integracão de seus sistemas superiores, quer pela racionalizagão decorrente de sua gestão coordenada e emprego de critérios e técnicas apropriados.

A interligafão dos sistemas, percebida como vantajosa e gradualmente implantada desde os primórdios das atividades do Setor, impőe a seus diversos componentes, notadamente às empresas detentoras de tais sistemas, uma coresponsabilidade na sua gestão e, consequentemente, nos resultados alcangados pelo Setor como um todo, em niveis que não são comuns em outras áreas da economia.

Assim, os servigos de energia elétrica, que de inicio eram isoladose independentes, circunscrevendo-se ao âmbito municipal, foram evoluindo, ampliando sua área de influência, en virtude da oportunidade e da viabilidade economica das interligagóes, motivadas pelo interesse
de alcangar as economias de escala mencionadas e de compensar a distribuicão heterogenea dos recursos naturais mais favoráveis à obtentão dessa energia, a cujos beneficios toda a populacâo do País tem, por princípio, direito. Dessa forma, passaram a assumir uma feicão regional e, mais recentenente, nacional. Dai a presenca natural do poder federal no Setor Elétrico, como responsável, en última instância, por sua atuafão.

Essa presenga se dá de diversas formas, sendo a definigão da política de gestão, a regulamentaço dos servifos e sua fiscalização exercidas pela administrafão direta, enquanto a coordenacão, promocão e orientafão das atividades setoriais é realizada pela Eletrobrás, cabendo a outros organismos a gestão dos sistemas de suprimento. A criacáo e o desempenho alcancado por órgãos como o GCOI, o CCON e o GCPS, que agregan concessionárias e Eletrobrás en torno de problemas de natureza especifica, com a operacão dos sistemas e o seu planeja... mento da expansão, indicam a aceitacão geral desses conceitos.

No momento, cabe considerar - além dos fatores que naturalmente contribuem para a economicidade dos servicos prestados, como a escala, a diversidade das demandase a coordenagão - a perspectiva de se aproveitar o grande potencial hidrelétrico ainda disponivel, pois a maior parte desse potencial apresenta custos significativamente menores do que as demais alternativas para producão de energia elétrica na escala que será requerida nas duas próximas décadas, com a vantagem de virem a constituir obras muito mais duradouras, gerando beneficios por muito mais tempo do que usinas termelétricas.

Os problemas financeiros e ambientais envolvidos no desenvolvimento do Setor, baseados no aproveitamento do potencial hidrelétrico, sảo, todavia, de tal monta, que somente uma acão coordenada e que conte com a colaboracão adequada e pertinente de todas as forgas do paíse, em particular, do Setor, poderá viabilizar, de forma econômica, essa linha de evolutão.

Dessa forma, e sendo essa direcão a mais desejável, por ser a mais econômica e independente do exterior, esse aspecto do planejamento do Setor, consubstanciado no Plano 20i0, torna-se agora uma de suas caracteristicas que qualquer legislacão e qualquer organizacão que venham a ser propostas deverão contemplar. Essa relacão entre as Caracteristicas do plano de expansão do Setor, com todas as suas exigencias especificas, e sua conformaçóo institucional é um ponto que convém enfatizar, particularmente em alguns aspectos.

A multiplicidade de obras a serem realizadas no periodo considerado pelo Plano 20i0, particularmente o grande número de usinas dos mais diversos portes, o início de programas termelétricos importantes, o volume de investimentos necessáriose os problemas ambientais que se afiguram na implementagão desse plano vão requerer uma participafão da sociedade bem maior do que a que houve, até hoje, no desenvolvimento do Setor. Essa participąão não prescindirá da a̧ão de empresas estaduais e municipais que, por sua origem e administrafão, propiciam - relacionamento com as comunidades atendidas e conseqiente consideracão de suas prioridades. A participacão dos Estados e municípios na prestacão de servicos de energia elétrica é uma conseqiencia das caracteristicas dessa atividade pelo interesse geral que os mesmos apresentam para o bem estar eprogresso das populacóes locais. Conseqiientemente, é natural que as empresas formadas por esses poderes tenham participacão não somente na distribuigão, que é a participacáo mais óbvia e, possivelmente, prioritária, mas também na
geracão, na medida do interesse local, e em funcáo dos recursos que tais comunidades se disponham a alocar a tais atividades.

Tampouco a iniciativa privada deverá estar alheia às atividades do Setor, seja na prestagảo de servigos públicos, seja na autoproducão ou na cogerafão, aportando assim recursos adicionaise necessarios. A participacão privada, inclusive nos serviqos públicos, afinada com os princípios pelos quais esses são regidos, poderá ser ampliada de várias formas, na medida em que seus capitais venham a ser direcionados para o setor.

De um modo geral, a presenca da sociedade, representada por elementos que veiculem os interesses especificos das comunidades, das diversas categorias de consumidores, dos prestadores de servicos, do segmento representativo do trabalho nas suas empresas, enfim, por todos os que são afetados pela atua̧ão do Setor, será benéfica para seu desempenho, desde que devidamente coordenada.

Nesse sentido, cabe ressaltar a vinculacão entre a acão da Eletrobrás com a inerente e pertinente presenca federal no Setor Elétrico. Essa presenga da Eletrobrás é particularmente necessária quando o interesse de diversos Estados está em jogo, necessitando de solucão que deva ser implementada ou coordenada, conforme o caso, pela entidade federal. Logo, por mais que se venha a modificar o quadro organizacional do Setor, a existencia de uma entidade coordenadora, federal, se mostra imprescindivel.

Certamente, há diferengas, senão conflitos, de interesses entre as várias áreas geográficas e de poder, e é necessário que o Setor esteja capacitado a administrá-los, no intuito de alcangar maior eficiencia na prestacão dos servicos, encontrando, por livre negociacão ou, ain da que assim seja, por administrafão de conflitos, a adequada participacão dos diferentes segmentos, o que variará segundo a região e a época.

Ao destacar a necessidade de se relacionar as propostas de revisão institucional do Setor com os meios possibilidades reais de cada agente responsável pela sua implementacio o projeto de revisão institucional se balizará pelo conteúdo especifico do Plano 2010, que se constitui referencia essencial.

8.2 Metodologia do trabalho

Segundo os Termos de Referência da Revisão Institucional do Setor Elétrico, aprovado em 09.07.87, o estudo está sendo conduzido sob a administracaio de uma comissão composta por Presidentes de enpresas do Setor Elétrico, pelo Diretor do DNAEE, por representantes da Seplan e da Sest, comissão esta que terá a responsabilidade pela aprovacão final e submissão das propostas e recomendacốes às autoridades competentes.

Para organizar os grupos de trabalho, coordenar e conduzir as atividades executivas, a comissão criou um comitê executivo formado por profissionais indicados pelas empresas e entidades participantes.
Foi ainda criada a Secretaria Executiva como núcleo de apoio para todas as atividades do estudo, cujo desempenho ficou a cargo da Eletrobrás, sob a coordenaçáo da Diretoria de Gestão Empresarial.

Os estudos serão apoiados pela assessoria de um Conselho formado por
pessoas de grande reputafão e com prévia experiencia oul
conhecimento do Setor Elétrico.
Os membros do Conselho são escolhidos pela Comissão e estão se reunindo periodicamente, fazendo comentarios e sugestö́es sobre estudos, propostas, recomendacöes e outros procedimentos que julguem necessários e apropriados para ajudar a Comissão a cumprir suas obrigacöes.

Todas as empresas do Setor Elétrico foram convidadas a indicar um representante para o estudo. O representante é responsável em canalizar informafóes e contatos entre sua empresa e o estudo.

- processo decisório, em todo o estudo e em todos os miveis, está baseado na busca do consenso total, com o máximo esforgo de todos os
interessados em atingir o consenso. Porém, se for impossivel, a decisão será baseada em grande consenso, con a devida atencão e consideračũo às opiniôes divergentes.

As datas limites para a implantacão e conclusão dos eventos principais sä́o as seguintes:

- Instalacão da Comissão, do grupo de consultores e dos grupos iniciais de trabalho: 31 julho 87
-- Relatório Final : 31 dezembro 88.
No momento da emissio deste Plano 2010, os trabalhos prosseguem conforme planejado.

2._-_A_ENGENHARIA...A_INDUSIRIA_E_A_PESQUISA IECNQLógICA

9.1 A indústria de equipamentos utilizados pelo Setor Elétrico

9.1.1 Caracterizafão da indístria nacional

A indústria nacional de equipamentos tem acompanhado satisfatoriamente a dinâmica imposta pelo Setor Elétrico, resultante da implantacão de suas instalagóes geradoras, sistemas de transmissáo e redes de distribuigão.

A formacão do parque supridor do Setor Elétrico pode ser considerada como apresentando duas fase distintas. A primeira iniciou-se com a producão dos primeiros equipamentos elétricos e hidromecânicos de grande porter ocorrida no início da década de 60 e caracterizada por certo pioneirismo e ausencia de um planejamento setorial que subsidiasse o processo.

A segunda fase ocorreu entre meados da década de 70 e inicio dos anos 80. Nessa fase, verificou-se a implantagão de novase modernas fá bricas e a ampliagão de muitas das já existentes, permitindo que a indústria do Pais alcancasse niveis tecnológicos, de produtividade e qualidade que hoje lhe possibilitam competir ativamente no mercado externo.

Fator preponderante dessa fase pode ser considerado oforte empenho do Governo em uma decidida politica de industrializacão e substituicáo de importagöes, com a criafão de diversos mecanismos impulsionadores, instrumentos de incentivo financeiro, fiscal e crediticio, operadosem conjunto através de entidades e agencias especificas, como o CDI, Finame, Finep, BNDESPAR e outros.

Nesse contexto, um dos fundamentos básicos, que permitiram ao empresariado industrial do setor autoridades governamentais avaliar a viabilidade e tomar a decisão pelos investimentos, foi, sem dúvida, a existência de um atraente e compensador mercado de equipamentos, cujas projecóes somente puderam ser consolidadas de forma global a partir do primeiro plano setorial integrado de longo prazo, o Plano 90, elaborado pela Eletrobrás em 1975.
Na fase atual, o governo vem implementando uma série de mecanismos voltados à correqão de certas distorcốes das etapas anteriores do processo, uma delas a forte dependência tecnológica externa, decorrencia da própria rapidez de implantafão do diversificado parque produtor. Tais mecanismos são dirigidos principalmente ao apoio, à absorcão e desenvolvimento de tecnologia, à consolidacáo da indústria já implantada, ao surgimento efortalecimento de uma competente matriz de subfornecedores.

Em decorrencia dessas anões, tem sido possivel fazer crescer significativamente os indices de nacionalizacão praticadose, ao mesmo tempor assegurar uma redugão da dependencia externa para os itens de maior conteúdo tecnológico. Naturalmente, näo se pretende produzir todos os insumos necessários para a fabricacão dos equipamentos e materiais de que demanda o Setor, o que, em fungão da pequena demanda de alguns itens e do vulto dos recursos financeiros e tecnológicos exigidos para a producão de outros, não seria técnica e economicamente recomendável.

O segmento industrial do Setor Elétrico, considerando seus principais fabricantes, está constituido atualmente por 55% de empresas de capital nacional, ou de controle majoritariamente nacional, e 45% de empresas com controle de capital estrangeiro, segundo estudos da Seplan.

A atual capacidade da indístria existente no Pais é, em linhas gerais, perfeitamente compatível con a evolugão prevista para a demanda de bens decorrentes do presente estudo de planejamento. Assim, considerando a evoluqão do mercado demandante nos prósimos anos, em funfâo dos niveis de crescimento previstos para a economia do País, näo há riscos do parque industrial deixar de atender às necessidades do Setor, em termos de capacidade produtiva.

A importancia do Setor como mercado de bens pode ser avaliada pela parcela do investimento global destinada a materiais e equipamentos: cerca de 30% do investimento total anual, que nos uiftimos anos tem sido da ordem de 4 bilhôes de dólares. Em valor absoluto, isso equivale a um dispêndio médio anual da ordem de 1,2 bilhão de dólares, dos quais uma parcela de 70% a 80% tem sido direcionada à indústria nacional.

- programa de expansão da geracão no médio prazo (1987/2001) contempla a instalaç̃o de 399 grupos hidro-geradores, representando cerca de 59.000 MW.

Quanto à capacidade de produfão, esta parece bastante adequada às necessidades do Plano, face ao potencial produtivo dos fabricantes de turbinas e geradores, tomados em conjunto: $9000 \mathrm{MW} / a n o$ (turbinas) e $7600 \mathrm{MUA} / \mathrm{ano}$ (geradores), parâmetros referidos a um conjunto das potencias mais usuais no sistema brasileiro.

No que tange aos equipanentos hidromecânicos (comportas, grades, "stop-logs", condutos forcados, porticos etc.), tambén nä́o oferece problemas a capacidade da indústria nacional, sendo de esperar-se um atendimento adequado à demanda resultante do Plano 2010.

No conjunto de uma unidade geradora há, entretanto, alguns materiais e componentes ainda importados (isolantes, certos acos especiais, protefảo e instrumentacão, etc.) constituindo um residuo que, todavia, não ultrapassa 5% do total.
9.1.3 Centrais termelétricas a carvão

Entende-se que no programa de construgão de termelétricas, tendo em vista a experiêcia vivida na área hidráulica, a questão de absorfã́o plena de tecmologia, quer de fabricacão, quer de projeto, terá que passar, necessariamente, pela fixafío de patamares no porte das unidades, a serem instaladas. Isto está de acordo com a diversidade de combustiveis com que terá que se lidar, adaptando o programa, as condifôes geograficase às diferentes funcöes que as usinas deverâo exercer.

Por exemplo, com relacão ao suprimento a partir da autoproducão em usinas de alcool e acúcar, devem ser consideradas unidades de menor porte, a partir da utilizacão do bagaco de cana. A seguir, vem o patamar das máquinas da faixa de 50 a 150 M, , indiscutivelmente muito importante como ponto de partida para vários fabricantes, com possibilidade de encomendas repetidas, e, em conseqiência, abrindo novos horizontes à absorcão de tecnologia, principalmente de projeto. Por fim, deve ser considerada a faixa de 350 a 600 MW como a mais provável num programa com maior densidade de termelétricas.

Pelas dimensöes que o programa deverá assumir, a classe de 350 m parece constituir um patamar compativel com o mercado até 0 ano 2000 , sem serem descartadas as potências menores. Em seguida, deve-se considerar a passagem para potências maiores, que, aparentemente, não apresentariam barreiras tecnológicas mais sérias, existindo apenas uma questão de dimensionamento para fabricacão.

Pelas conclusóes do Encontro Técnico sobre Usinas Termelétricas, promovido pela Eletrobrás em julho de 1986, e informaföes complementares de fabricantes, é a seguinte a atual capacidade da industria nacional para tais componentes:

- para a caldeira, a experiencia nacional, em termos do já fornecido. encontra-se na faixa de $400 \mathrm{t} / \mathrm{h}$;
- para a turbina a vapor, a capacidade declarada da indístria nacional está limitada a unidades de 150 MW , com tecnologia externa, sendo o rotor ainda importado;
- quanto ao gerador, já existe capacidade de produgão de máquinas até 350 MW , com tecnologia externa.

9.1.4 Centrais nucleares.

A expansão da gerafõo até o ano 2001 considera 2 usinas nucleares: as centrais de Angra II e Angra III, de 1245 MW cada uma, previstas para entrada em operagaio, respectivamente, em 1.993 e 1996.

Essas usinas, segundo informe da Nuclen, apresentam hoje um indice de nacionalizatão de componentes mecânicos de 35% em valor kglobalmente, esse indice é de 65%, se considerados os servicos de engenharia civil, matéria-prima e måo-de-obra).

Considerando a hipótese de nacionalizacão crescente, estima a Nuclen que, para uma próxima usina a ser construidar já se atinja um nivel, na área de componentes, da ordem de 60% e, globalmente, de 75%. Entre os componentes e os materiais não nacionalizados, prevése o grupo turbo-gerador (1.300 MW), o grupo diesel de partida rápida, parte da instrumentafão e controle, agos e ligas especiais eforjados de grande porte.

É essencial que seja definida uma estratégia de utilizacão do potencial da Nuclep, fabrica construida para fornecer os componentes pesados das usinas nucleares (vasos de contencão, núcleo do reator, gerador de vapor etc.). 0 não aproveitamento racional da Nuclep colocará esse viltoso investimento sob risco de sucateamento precoce, levando o Pais a contingência de, no futuro, ter de importar os componentes para os quais se capacitou a produzir.

9.i.5 Outras tipos de centrais

Embora não incluídos nos programas de referencia de geracâo, alguns programas de carater complementar poderão ter sua execucão implementada no periodo, o que representará um importante mercado adicional para a indístria fornecedora.

Estão nesse caso os programas de ampliąão ou repontecializacão de usinas hidrelétricas, instalăäo de usinas reversiveis, pequenas cen trais hidrelétricas (PCH) e pequenas centrais térmicas (PCT).
9.1.6 Subestacöes

Como resultado do grande esforco de nacionalizafão desenvolvido nos ultimos anos, a indústria brasileira já produz praticamente todos os equipamentos necessários a uma subestagão do sistema elétrico, nas diversas classes de tensão até 750 kV , com índices variados de nacionalizacão.

Quanto a equipamentos para estacóes conversoras CA/CC, o esforco de nacionalizacão inicial encontrou como obstáculo a inexistência de mercado que justificasse uma escala de produfão de componentes sensiveis, principalmente os tiristores de alta capacidade de corrente (3000 A).

Mesmo assim, a necessidade da implantąão do sistema CCAT para o escoamento de parte da energia gerada em Itaipu, e a possibilidade de futuras interligacöes em CCAT entre as regiöes produtoras do Norte do Pais e centros consumidores das regioes Sudeste e Nordeste, motivaram vários fabricantes a se capacitarem ao fornecimento de componentes especificos, alguns de alto contédo tecnológico (filtros,
©apacitores, elenentos de fibra óptica, seccionadores etc.), ao mesmo tempo em que os principais fabricantes de transformadores de potencia dispőem de tecnologia de suas matrizes para os tipos especiais utilizados nas conversoras CA/CC.

Quanto a compensadores síncronos, a demanda é atendida pelos fabricantes de hidrogeradores, com potencia limitada a 400 MVAR, refrigerafaio a hidrogenio, sendo que, para as conversoras CCAT do sistema Itaipu, a indústria nacional forneceu estatores e carcacas das unidades de 300 mVAR.

Há também perspectivas de utilizagão de pesados esquemas de compensacão série, cuja implantacâo nos circuitos de 750 kV de Itaipu possibilitará a transmissäo dos 6.300 MW gerados em 60 Hz naquela usina. A capacidade nacional de fornecimento desses conjuntos deverá ser objeto de avaliafão, à luz das necessidades de médio e longo prazo.

9.1.7 Linhas de transmissão

Esse segmento já é integralmente atendido pela indústria brasileira, que participa tambén, com exito, do mercado externo.
Nas tensöes de subtransmissão, até 69 kV , predominam as estruturas de concreto: em 138 kU predominam as de $\mathrm{aco}(90 \%$), ε, em 230 kV , já é mínima a parcela de estruturas em concreto; a partir dessa tensão, somente são empregadas estruturas metálicas.

O fornecimento de estruturas de concreto vem sendo perfeitamente atendido, através de diversas fábricas regionais, cuja capacidade atual deverá atender satisfatoriamente à demanda a curto e médio prazo.

As estruturas metálicas são fornecidas nas indistrias cuja capacidade total soma cerca de 120.000 t/ano, que é também satisfatória a curto e médio prazo, havendo, entretanto, necessidade de uma coordenafão quanto à colocacão das encomendas, para um adequado carregamento das fábricas.

Quanto a cabos condutores, praticamente na totalidade do tipo ACSR, a indústria nacional terá plenas condicöes de atender às necessidades do Setor. A capacidade total da industria é de 150.000 a 180.000 t/ano.

9.1.8 Redes de distribuicão

De uma forma geral, no que se refere a equipamentos e materiais para redes de distribuifẫo, a indústria nacional detém quase completa capacitagão e atende a cerca de 90% das necessidades do Setor, praticando índices de nacionalizafão superiores a 90%, principalmente no que tange a redes aéreas, cuja expansâo poderá atender plenamente, tanto nos aspectos tecnológicos quanto em capacidade produtiva.

Embora já exista uma tradifão e competência nacionais em fornecimento para redes subterrâneas, esse segmento deverá merecer uma atenção sobre a avaliarão tecnológica e produtiva da indústria para o seu atendimento.

9.1.9 Equipamentos de telecomunicarão

A industria de material para telecomunicagós tem nas concessionarias um grande mercado, somente superado pelo proprio setor de telecomunicagóes. Além disso, para certos tiposespeciais de componentes, por exemplo, terminais de onda portadora de linhas de alta tensáo, o Setor Elétrico constitui usuário exclusivo.

O incremento do emprego de sistemas automatizados de controle supervisivo (em usinas, subestacôes e redes de distribuíắo), cuja tendencia já se verifica em varias concessionarias, certamente aumentara a importância do Setor, como mercado para a indístria de aparelhagem de telecomunicagöes, tendo em vista a grande aplicacáo de componentes especificos em tais sistemas ("modems" de transmissâo de dadosy equipamentos "carrier", sistemas rádio etc.).

Outrossim, no que concerne a comunicagóes óticas -- cuja utilizagão deverá crescer significativamente nos próximos anos, tendo em vista suas aplicagôes, não só na área de telecomunicagôes como também na de instrumentafáo esistemas de controle e telemedicão - o Setor Eletrico tem efetuado aprofundados estudos no sentido do seu emprego, inclusive como uma forma de viabilizar sua produgăo e dos demais componentes opto-eletrônicosn

9.1.10 Instrumentagẽo e informatica industrial

A utilizafáo da tecnologia digital em controle de processos, em face dos seus recursos de programacio e comutagão de informacóses, representa, na atualidader solugão natural para os problemas operacionais de sistemas elétricos, seja a nivel de despacho centralizado, seja no controle e supervisáo local de usinas e subes. tagóes.

O emprego dessa tecnologia na supevisáo de sistemas elétricos já está se consolidando no pais, servindo como exemplo a implantagão do Sistema Nacional de Supervisão e Controle (SINSC), constituido de um sistema de supervisáo hierárquico do qual participam io empresas de energia elétrica.

Na área de supervisão de redes de distribuigão o quadro é semelhante, já sendo conhecidos 6 projetos, em diferentes empresas: 4 em fase de implantação $u m e m$ fase de licitaç̃o, e um emplanejamento.

Sobre a supervisão e controle local de usinas e subestacopes, sua aplica̧áo encontra-se ainda em fase embrionaria no país, embora parcela significativa das empresas de energia elétrica tenha decidido
pelo seu emprego, estando os respectivos projetos em fase de estudos e especificacöes preliminares.

9.1.11 Algumas diretrizes de ăão relativas ao setor industrial

A ação da Eletrobrás, como impulsionadora do desenvolvimento dos segmentos industriais que dizem respeito ao Setor, naturalmente não se esgotou na implantacáo do parque produtor, enfatizada no parágrafo inicial deste capitulo.

Nas fases subseqiuentes a implantacão do parque produtor, a tarefa consiste en desenvolver esforcos para consolidálo através do incentivo à permanente melhoria da qualidade do produto nacional, na permanente vigilância para o máximo direcionamento das compras setoriais ao mercado interno, no apoio de instituicôes governamentais a sua consolidacão, enfim, em uma aça permanente de promocão e coordenacão do relacionamento entre o Setor Elétrico e a Industria Nacional, a fim de manter e assegurar o adequado atendimento as suas necessidades de equipamentos, materiais e tecnologia, de forma compativel e articulada com as politicas do país.

Encontrando-se o processo de substituifão de importacão em fase de esgotamento, a afão deverá voltar-se, nos próximos anos, principalmente ao aprimoramento tecnológico, à criafão e desenvolvimento de tecnologias próprias e adequadas ao pais, e ao acompanhamento do estado da arte e inovacóes tecnológicas de interesse do Setor.

Nesse contexto, é importante destacar as seguintes diretrizes de acảo que assegurem, de parte do setor industrial, um atendimento produtivo e tecnológico nivelado aos requisitos determinados pela expansão do sistema elétrico nacional: implantacấo de procedimentos que assegurem a permanente adequafão execufão de uma politica de suprimento de materiais e equipamentos; implementafão e manutencão do cadastro de fornecedores e de produtos para o Setor Elétrico; avaliacão da capacitacão tecnológica e de fornecimento do parque industrial; atualizaçáo periodica das previsôes da demanda de equipamentos, materiais, componentes e matérias-primas; estímulo à nacionalizačáo progressiva dos equipamentos, materiais, componentes e matérias-primas utilizados pelo Setor, com especial atencão para os processos de transferencia de tecnologia de projeto e fabricafäo incentivos à presenca das pequenas e médias empresas nacionais, nos fornecimentos de materiais especificos ao Setor.

9.2 Servicos de engenharia, construgão e montagem

O segmento voltado a prestacão dos servigos de engenharia, construgão e montagem se caracteriza pela presenfa predominante e quase exclusiva de empresas nacionais. Essa situafão é resultado basicamente da legislacão protecionista implantada no Brasily com apoio das associaföes de classe de engenheiros e de empresas, e da política de contratacáo de servigos posta em prática pelas grandes empresas estatais brasileiras.

- Setor Elétrico tem uma posigão de destaque nesse campo. Estimativas correntes caracterizam como da ordem de 70% do total do faturamento das empresas de consultoria filiadas a $A B C E$ a parcela oriunda do Setor Elétrico. No tocante aos servicos de construão e montagem pode-se dizer que as empresas de maior porte têm igualmente no setor Elétrico o seu cliente mais importante, embora este mercado seja, pelas suas
caracteristicas, mais distribuido inclusive com empresas de área de atuacáo regionalizada.

A análise das principais implicacôes da programafáo de obras do Plano 2010 sobre esse quadro de prestadores de servigo foi objeto do "Encontro sobre Demanda de Servicos de Engenharia e Projeto, Construfão e Montagem" promovido pela Eletrobrás e que contou com a participacaio das seguintes entidades: ABCE, Sinicon e Abemi. As Eletrobrás.

Preliminarmente a apresentaqão de algumas consideracões referentes a esses segmentos, alguns pontos sáo importantes destacar:
-- oprograma de obras do Plano 2010 é qualitativamente diferente do passado. No tocante às obras de gerafâo em vez de um pequeno número de grandes obras (6 no último quinquênio), o programa prevê 30 a 40 novas obras para cada um dos próximos quifqijênios. Essas obras serão na sua grande maioria de médio porte, (vide tabela 9.2-1) portanto passiveis de uma maior distribuifão entre executantes (seja para projeto, seja para construGão). Assim, o nimero de frentes de trabalho será bem maior que no passado, exigindo um grande cuidado na obtencão sistematizada de economias no projeto e implantacão tão grande número de obras;

TABELA 9.2-1
BRASIL
numero de usinas
COM INíCIO DE CONSTRUEXO PREvisto até 1997

FAIXA DE POTÊNCIA	NUMERO DE
DAS USINAS	
(HW)	USINAS

(300	61
> 300×1000	23
> 1000 e < 2000	11
) 2000	3
Total	98

- o papel do financiamento externo será mais importante do que no passado recente. A situagão econômica do setor implicaránum volume de participafáo externa no financiamento do programa de expansáo mais elevadan Isso se traduz normalmente uma maior importagáo de equipamentos eservicos (por cláusulas comerciais ajustadas) ou na realizacão de concorrencias internacionais (nos casos do financiamento de BID ou BIRD). Nấo tendo os segmentos de construfâo e montagem pesada uma tradigão de disputa nesse plano, a situafấo poderá implicar numa desnacionalizagão temporária desse setor, a menos de medidas especiais sejam tomadas articuladamente pela Eletrobrás, entidades de classe sindicatos patronais;
- o programa termelétrico conforme estabelecido no plano 2010 pode se constituir em oportunidade para a promofâo da capacitacão nacional no projeto de construgão e operagão de usinas térmicas. Nas fases
iniciais desse processo deverá se perseguir a realizacão de trabalhos em conjunto com empresas estrangeiras, resguardada a observancia de cláusulas que assegurem a transferencia de tecnologia. A experiencia da Canambra na década de 60 para o setor hidroelétrico possivelmente terá de ser repetida agora para o de termelétricas, embora a presenca de alguns núcleos com capacitacioo em engenharia integrada, controle de qualidade, etc., como a Nuclen possam eventualmente suprir das carências do Setor Elétrico;
-- os projetos de usinas adquirirão crescente complexidade na fase de estudos, não só por incluirem análises de usos múltiplos, mas também para atenderem as crescentes demandas sociais e ambientais;
- a universidade - nas áreas sociais, antropologia, arqueologia dentre outras - e os institutos de pesquisa poderáo por outro lado aportar novos conhecimentos ou abordagens para problemas que transcendem os enfoque tradicionalmente oriundos das empresas de consultoria.
- a conservacão de energia e outras acões sobre a demanda representam igualmente uma área onde uma maior capacitagão deverá ser buscada, inclusive no exterior, face à dimensão dos nossos problemas e o curto prazo para implantafấo de solutôes racionalizadoras;
- pelo fato do programa ser maior e mais distribuido regionalmente o numero de contratantes se multiplicará pela inclusão empresas até agora restritas a atividades de escopo mais limitado. A atividade de gerenciamento eficaz de projetose obras deverá ganhar destaque e expressão, seja como recurso contratado, seja como capacitafáo a ser adquirida por essas empresas. A competigáopor recursos financeiros exigira do Setor e desses novos contratantes uma crescente busca de economicidade, que se refletirá na obrigatoriedade de um elevado padrão de desempenho gerencial.

9.2.1 Empresas de consultoria e engenharia

O perfil da demanda de servicos do Setor Elétrico deverá proporcionar uma reativagão das empresas de consultoria e engenharia. Apenas no segmento de expressão, seja como recurso contratado, seja como capacitacáo a ser adquirida por essas empresas. A competigão por recursos financeiros exigira do Setor e desses novos contratantes uma crescente busca de economicidade, que se refletira na obrigatoriedade de um elevado padrấo de desempenho gerencial.

A Eletrobrás já desenvolve e intensificará seus entendimentos con ABCE no sentido de assegurar-se de uma resposta adequada as suas demandas do ponto de vista qualitativo equantitativo.

9.2.2 Empresas de construgão e montagem

Conforme caracterizado no "Encontro" promovido pela Eletrobrás, a grande novidade neste segmento e a possibilidade pratica de um maior número de empresas se habilitar a executar as obras do Setor, até hoje um mercado dominado por um numero restrito de executantes de alta qualificaçáo técnica e financeira. A reducão no porte das obras, sua dispersăo geografica, e multiplicagão dos contratantes levará inevitavelmente a uma maior competifäo nesse mercado.

Em alguns casos a agregatão em um só contrato de execugão de diferentes obras sequenciais numa mesma bacia podera ser justificável, principalmente considerando-se as vantagens de uma insergäo regional
mais econômica das infra-estruturas de apoio (rede de transporte, saúde, educacão e saneamento estabelecida em funç̂o da obra).

As atividades de montagem poderão ganhar de expressão não só pela maior importancia esperada das interligafôes regionais como também pelo já citado programa termelétrico.

Pelo porte das obras o risco de uma desnacionalizacáo desse setor caso aberto para concorrencias internacionais (o que é mandatório no caso de financiamentos de BID e BIRD) é grande. Entretanto, face à experiência adquirida por empresas brasileiras no exterior e desde que o Setor adote as medidas corretas nos editais de concorrência, serão criadas as condiföes para que as empresas brasileiras assegurem para si uma posicão preponderante neste mercado.

9.3 Diretrizes para a área de pesquisa e desenvolvimento

A execugão dos programas de expansão previstos no plano 2010 certamente exigira um grande desenvolvimento das atividades de pesquisa e desenvolvinento, de modo a assegurar que o Setor Elético continui a se manter tecnologicamente atualizado, promovendo, paralelamente, o gradativo aumento da autonomia tecnológica nacional na producão, transporte e utilização da energia elétrica.

Os seguintes aspectos do Plano 2010 podem ser citados como particularmente importantes para a formulafáo de uma politica de pesquisa e desenvolvimento:

- nas próximas décadas, a hidreletricidade continuará a predominar na expansão da capacidade geradora, sendo, portanto, o Brasil um dos poucos países com grande interesse em continuar a desenvolvê-la tecnologicamente;
- os sistemas de transmissão associados ao aproveitamento do potencial hidrelétrico da Amazônia terão peso crescente nos investimentos do Setor, o que transforma a transmissão a longa distancia em questão tecnológica de importancia fundamentaly
- a previsão de que o aproveitamento integral do potencial hidrelétrico competitivo ocorrerá próximo a 2015 implica a necessidade de se preparar o País para a construfão em larga escala de termelétricas após esta data;
- as ambiciosas metas de conservafáo estabelecidas no plano exigem um grande esforco de desenvolvimento tecnológico na área da utilizacão da energia elétrica.
- Centro de Pesquisas de Energia Elétrica-Cepel constitui-se hoje no mais importante instrumento que possui o Setor Eletrico para a execurão de sua política tecnológica. Em seus 13 anos de existência, o Cepel já deu expressiva contribuifão ao Setor, quer pela prestafão de servicos, quer pelo desenvolvimento de tecnologias transferidas a concessionarias de energia elétrica e indústrias privadas. Neste periodo, foram investidos cerca de uss 100 milhöes em instalagôes fixas, o que permitiu ao Cepel dotar-se de razoavel infra-estrutura.

Atualmente, o Setor dispende cerca de USS 20 milhões anuais com o Cepel, equivalente a cerca de $0,4 \%$ do seu investimento total. Naturalmente, este não é o total do investimento do Pais em pesquisas na área
de energia elétrica, pois várias concessionarias e mesmo empresas fora do Setor, como a Nuclebrás, desenvolvem atividades neste campo.

Apesar de não serem conhecidos com precisão, os dispendios em pesquisa e desenvolvimento hoje realizados em energia elétrica, quando comparados ao total do investimento do Setor Elétrico, são considerados insuficientes para fazer face às novas exigencias do plano 2010. Neste sentido, espera-se atingir, nos próximos anos, os seguintes objetivos:

- segmentar nos orgamentos das diferentes entidades envolvidas com a energia elétrica as parcelas atribuiveis à pesquisa e desenvolvimento:
- elevar o total destes dispêndios a um valor da ordem de 3% do investimento global do Setor Elétrico.

A seguir serão descritas as principais áreas de pesquisa de interesse para o Setor Elétrico.

9.3.1 Planejamento da expansão e da operacão de sistemas elétricos

As caracteristicas do sistema elétrico brasileiro <altas taxas de crescimento, grande extensão geográfica, predominância de geracão hidrelétrica, transporte de grande blocos de energia a longa distancia) impedem a aplicacão de técnicas de planejamento e operacão tradicionalmente utilizadas em outras regiôes do mundo. Esta situacão levou a um grande esforco no desenvolvimento de métodos, critérios e modelos adequados nossa situacáo, existindo hoje pessoal especializado numa ampla gama de conhecimentos, incluindo sistemas elétricos, otimizacão, computacão, estatísticas e recursos hidricos.

Os resultados ja alcancados permitiram melhorias significativas nas atividades de planejamento e operacão do sistema brasileiro. Pode-se citar como exemplo o desenvolvimento pelo Cepel, Eletrobrás e empresas concessionarias, de modelos de operacão ótima do sistema interligado, novos eritérios de planejamento em bases probabilisticas, modelos de expansão otimizada de sistemas de geraçãoltransmissão, sistemas computacionais integrados para análise e controle de redes elétricas em tempo real, modelos de cálculo de confiabilidade de atendimento de ponta etc.

Apesar dos grandes avancos observados nesta área, existe hoje a consciencia dos problemas criados pela dispersấo das atividades por várias empresas, e mesmo por diferentes órgãos dentro de cada empresa. De acordo com as conclusôes do I Encontro de Modelagem da Geracâo, que contou com a participacão das empresas do setor envolvidas com a questão, foi recomendado o desenvolvimento de um sistema de informacão único e de un conjunto de modelos a serem utilizados pelo planejamento da expansão e da operagão, visando aos seguintes objetivos:
-.. unificaqão de métodos e critérios;

- facilidade na utilizacãor manutencão e transferência aos usuários;
- maior eficiencia computacional;
- utilizacão de técnicas de programacão estruturada;
- boa documentagão.

Para a consecutão desses objetivos, recomendase a eriacão de um programa de desenvolvimento tecnológico, conduzido por técnicos do Cepel, Eletrobrás, concesssionarias, universidades e consultoras, e orientada pelo GCPS e GCOI.

As áreas prioritárias para desenvolvimento de novos métodos e modelos รão:
-hidrologia;

- planejamento da expansão da geraãõo
- planejamento da expansão da transmissão;
- confiabilidade de sistemas elétricos:
- operacão energética de sistemas
hidro-térmicos;
- análise estática de sistemas elétricos;
- controle em tempo realy
-- dinâmica de sistemas de potência e máquinas elétricas;
- transitórios eletromagnéticos em sistemas de potencia;
- planejamento de sistemas de distribuigão;
-aplicacão de tecnologia avancadas de computacão a sistemas de
potência.

9.3.2 Automac̃o e instrumentacão para sistemas elétricos

A engenharia eletrônica ven se desenvolvendo rapidamente em funã̃o do advento de novos dispositivos, tais como: circuitos de larga inte. grafâo (nicroprocessadores), fibras óticas tiristores de potência e circuitos integrados dedicados, etc..

Um aspecto importante desta evolucáo é constituido pelo fato de que o custo de projeto de novos produtos está normalmente concentrado em desenvolvimento de software, o que viabiliza a criagão de competencia nacional e, conseqientemente, a obtencão de produtos de alto grau de nacionalizagão da tecnologia.

O Setor Elétrico, em especial o Cepel, vem trabalhando há vairios anos na aplicafão destas novas tecnologias no desenvolvimento de equipamentos esistemas. Pode-se citar, como resultado deste trabalho, a transferencia de tecnologia a concessionárias e indústrias nacionais de diversos produtos, tais como: terminais de aquisigáo de dados, sistemas regionais de supervisáo e controle, registradores de perturbacão, modems digitais, relés dé distanciáe de proteqão de motores, e medidores e registradores de demanda.

As áreas de pesquisa consideradas mais importantes são:

- instrumentafão de medifão, controle e proteqão de subestacões;
-- instrumentafão de medigão e controle para rede de distribuigão;
- desenvolvimento de instrumentacio de medioão, controle e regulafão para usinas.

9.3.3 Transmissão de energia elétrica

Constitui grande desafio para a engenharia e para a indústria nacional capacitarem-se tecnologicamente para atender de modo pleno às necessidades dos projetos das interligaqoes Norte-Nordeste e NorteSudeste, vencendo distâncias de mais de 2000 km .

Este processo de capacitagão tecnológica deverá envolver a participacão de vários agentes, tais como: concessionárias, centros de pesquisas, universidades, consultoras, fabricantes de equipamentose materiais, etc. Deverão ser montados projetos-piloto com vistas ao desenvolvimento e aperfeifoamento e de equipamentos, componentes e acessórios.

As duas técnicas de transmissão a longa distancia, $C A \in C C, e_{\text {en }}$ como um ponto comum o emprego de equipamentos baseados em tiristores. No caso datransmissão em CC, são de importância crucial as pontes conversoras e os compensadores estáticos nos terminais, para controle de tensão e fornecimento de potencia reativa. No caso CA, destaca-se a aplicacão de compensadores estáticos, pela sua capacidade e velocidade de controle de tensấo. Diante de sua importância, as válvulas a tiristores e seus controles deverão ser objeto de projetos de pes... quisas, abrangendo as etapas de estudos, testes em laboratórios e no campo, com o objetivo de gerar-se um produto em condifóes de ser industrializado. o projeto de compensador estático que o Cepel vem desenvolvendo é um primeiro passo nesta direqấo.

Outra área de estudos é a decorrente do pouco conhecinento das condicöes climáticas das regiôes Norte e Centro-Deste. Considerando o longo período necessário para a coleta de dados, é recomendável a instalaćóo imediata de estacôes anemo-ceraunométricas, ao longo das rotas prioritárias, para melhor caracterizar a regiấo em relacáo aos parâmetros mais relevantes para o dimensionamento de linhas de trans. missáo. Também é necessário investigar o comportamento elétrico de sistemas situados em regiôes de umidade elevada, como a Amazonia..

Além do desempenho elétrico, também o desempenho mecânico de condutores agrupados em feixes múlifios devera ser cuidadosamente analisado.

Os isoladores representan por si só um desafio tecnológico. Para fazer face às cargas mecânicas de um sistema UAT, serão necessarios isoladores com resistencia eletro-mecânica superior aos atualmente disponiveis no País.

9.3.4 Geracão de energia elétrica

Embora o Pais se encontre em estágio bastante desenvolvido na área de projeto e construfão de hidrelétricas, existe ainda um potencial apreciável de aperfeigoamento em áreas como: criterios de projeto de usinas (por exemplo, dimensionamento de vertedouros); desenvolvimento de novos métodos eferramentas computacionais de cálculo aplicáveis, por exemplo, a estudos hidrodinâmicos e otimizafáo de cálculo de estruturas; e emprego de novas técnicas construtivas.

Aparentemente, a área de termeletricidade poderia ser considerada de menor prioridade diante do fato de hoje se prever que o seu ritmo de desenvolvimento será bastante inferior ao da hidreletricidade até o
ano 2015. Isto, entretanto, é ilusório, diante da pequena experiencia nacional na área - o que implica prazos bastante dilatados para um processo de capacitagão tecnológica - e também diante da possibilidade de que as necessidades de termeletricidade sejam antecipadas por uma conbinafão de maiores taxas de crescimento de mercado e de eventuais dificuldades na utilizaøáo do potencial hidrelétrico nos niveis propostos.

Justifica-se, portanto, o desenvolvimento de um amplo programa de absorgáo de tecnologia e capacitaça nacional para a fabricafão de equipamentos e construã̃o de centrais termelétricas, já parcialmente contemplado no Plano 2010 através do programa mínimo de construgão de centrais nucleares e a carvão.

No momento, está sendo estudada a estrutura institucional que deverá ser criada para desenvolver este programa, pois, necessariamente, deveräo ser envolvidas entidades externas ao Setor. Em particular, deverá ser aproveitada a experiencia desenvolvida no grupo Nuclebrás, especialmente pela Nuclen, o que possibilitará uma melhor utilizacão de suas equipes de engenharia, disponiveis em funcão do menor ritmo do programa nuclear.

9.3.5 Conservacão de energia elétrica

Para se atingir as metas do Procel (vide item 2.2.3), o seu programa de desenvolvimento tecnológico incluira atividades que, resumidamente, podem ser classificadas nas seguintes áreas de pesquisa:

- Estudos sobre o uso racional de energia em edificacóes;
- desenvolvimento de sistemas de refrigerafão e iluminacão mais eficientes;
- desenvolvimento de sistemas de acionamento de alto rendimento, com o emprego de dispositivos eletrônicos de potência, para controle de velocidade de motores;
- otimizafão de projeto de motores, incluindo a utilizafáo de novos materiais.

9.3.6 Novas tecnologias

Além das grandes linhas de desenvolvimento tecnológico acima definidas, fatalmente novas linhas serão estabelecidas no futuro, em funcâo do aparecimento de inovacôes tecnológicas promissoras. Em particular, deverão ser acompanhados os progressos obtidos pelas novas tecnologias que hoje estão sendo objeto de grande atencão no cenário mundial como ceramicas supercondutoras, polímeros condutores, polimeros isolantes e outros materiais estruturais.

9.4 Normaliząão, controle da qualidade e certificação

9.4.1 Normalizacão

A atividade de normalizacáo é caracteristica de paises desenvolvidos, que reconhecem sua essencialidade no estabelecimento de politicas de eficiência equalidade. O atendimento à norma e sua realimentafão, no caso de discordância, são conceitos a serem aceitos, difundidos e consolidados, através de medidas eficazes. A normalizaça, basicamente
voluntária, e emprego sistemático da norma, posicôes não necessáriamente antaginicas, decorrem do aprimoramento cultural, não só dos segmentos envolvidose beneficiários diretos da normalizagão, mas da sociedade, como um todo homogêneo, que não poderá crescer sem a procura da eficiência, da produtividade e da qualidade.

Deverá ter continuidade o Programa de Intercâmbio e Participacão do Setor Elétrico na Normalizafão - Pronorm, que visa adotar o Setor Elétrico de um acervo de normas técnicas compativel com o desenvolvimento do Pais, em geral, e do Setor Elétrico, em Particular. Participan do programa 44 empresas de energia elétrica, dentre controladas, coligadas e empresas privadas. Tendo em vista a estimativa atual de que, através do programa, 85% dos materiais ε equipamentos de distribuicão e 40% dos equipamentos de subestafôes estejam normalizadas, prevê-se, nas próximas décadas, o término da normalizacão dos equipamentos de distribuicão e a normalizarão de cerca de 80% dos equipamentos relacionados à transmissão.

As concessionárias será recomendado organizarem setores de normalizaceno, proporcionais ao porte da empresa, que se responsabilizarão pela coordenafão das atividades relacionadas à normalizafão, dentro e fora da empresa. A Eletrobrás caberá o trabalho de coordenacão entre as concessionárias e a ABNT.

9.4.2 Controle da qualidade

- controle da qualidade no Setor Elétrico deverá envolver, em afão integrada, concessionárias, fabricantes, laboratórios e associacôes vinculadas à qualidade. A implementacão de programas da qualidade, que sistematizem as atividades de qualidade necessárias para uma acão eficaz e integrada da concessionária e do fabricante, deverá acarretar melhoria da qualidade dos produtos utilizados pelo Setor Elétrico, com consequiente reducão de custos e melhoria dos servicos prestados pela concessionária.

Deverão ser disseminados, sobretudo entre fabricantes de menor porte, os conceitose técicas de controle da qualidade, numa atividade dé extensáo tecnológica que, seguramente, ultrapassará a fronteira do Setor Elétrico, para beneficiar as exportacóes de equipamentos e componentes.

9.4.3 Certificação

A certificagão de materiaise equipamentos deverá ter significativo impulso nos próximos anos, em decorrência da necessidade, já ressaltada, de desenvolvimento, no pais, de uma politica global de qualidade. A semelhanca do que ocorre nos países industrializados, as compras no âmbito interno e as transafốes internacionais deverio exigir cada vez mais as garantias advindas de um sistema de certificafáo. O próprio fabricante nacional deverá beneficiar-se da certificacion nas vendas a outros países.

Deverá ter seguimento o Programa de Qualificacão de Materiais e Equipamentos - Proquip, coordenado pela Eletrobrás, com incremento das duas atividades previstas pelo programa: qualificacão e certificaçáo. Através da qualificacão, deverá ser sensivelmente aumentado o re. lacionamento concessionária-fabricante, numa atividade integrada, envolvendo o monitoramento dos equipamentos em operafão e a realizagão e o desenvolvimento de ensaios, que crie subsidios para o aprimoramento da normalizacão técnica e beneficie, tanto o fabricante, pela melhoria do produto, quanto as concessionarias, pelo
aprimoramento do seu sistema de aquisifão controle de materiais e equipamentos.

Através da certificaciono as concessionárias e os fabricantes se beneficiarão com a significativa reducão dos custos de aquisifâo e controle de qualidade; bem como com o aumento de seu conceito a nivel nacional e internacional. A normalizacáo técnica se beneficiará de credibilidade e qualidade em seus documentos normativos.

Prevê-se a organizafão do catálogo de produtos certificados, com atualizacão constante, condicionada ao monitoramento pela certificacão. Informacöes relativas a produtos certificados deverão ser reunidos em banco de dados acessados através de terminais nas concessionárias.

9.5 Participacão do Setor Elétrico no relacionamento internacional

As atividades de cooperatão técnica internacional têm adquirido, nos ultimos anos, uma crescente importância, fazendo parte de quase todas as pautas dos acordos celebrados entre paises em desenvolvimento e entre estes e os industrializados.
o Setor de Energia Elétrica, pela sua importancia no contexto econômico-social dos paises em desenvolvimento, tem sido um dos mais visados para a formulacão de projetos de cooperafão técnica, e muitos paises se reestruturam criando organizacóes especificas para coordenar e gerenciar projetos e programas nessa área.

- Brasil, por sell lado, dispôe hoje nessa área de um acervo de conhecimentos, de instalafóes físicas e de recursos humanos de grande expressão, mesmo se comparados aos existentes nos países industrializados, tendo se tornado gradativamente mais eficiente e detentor de um alto grau de conhecimentos, grafas aos esforfos e investimentos governamentais, através do Grupo Eletrobrás e empresas concessionárias. Foi criado um complexo de empresas brasileiras consultoras, construtores e fabricantes de equipamentos para geracão, transmissão e distribuifão de energia elétrica.

No que se refere à utilizacão desse potencial visando a sua promofão comercial, verifica-ser todaviar um quadro bastante incipiente. As atividades de promofão da tecnologia e engenharia nacionais são raras e poucos sấo os exemplos concretos de efetiva articulaf̃o interna, com vistas a um projeto comum brasileiro.

A Eletrobras, exercendo a fungão coordenadora que lhe cabe e buscando formas de auxiliar na promocão de um arranjo nacional adequado para cada situacão de cooperafáo que se configure, desenvolve esforgos no sentido de propiciar a esta atividade uma crescente amplitude e organizacão, de forma a promover, assistir e orientar os interesses do Setor no intercâmbio internacional, seja criando um mercado utilizador do know-how acumulado, seja buscando, junto a órgãos do exterior, os conhecimentos especializados de que o Setor eventualmente necessite.

Já são vários os exemplos da ắa da Eletrobrás e empresas do Setor na cooperafão internacional, podendo-se citar, entre outros, os convênios de cooperacia com a Eletroperu, com a Companhia Nacional de Eletricidade de Angola, com a Aguas y Energia Electrica (Argentina), e com o Inecel, no Equador.

Para uma maior eficáciana cooperafáo intermacional é necessário,
entretanto, uma
permanente agáo conjugada com a de setores interessados, no sentido de: identificar, no devido prazo, projetos de interesse, por meio de um trabalho prospectivo; manter a necessairia articulacáo com fontes informativas (embaixadas e servigos consulares, escritórios brasileiros no exterior etc.); manter relacionamento com organismose instituicöes financeiras internacionais; colaborar no apoio à obtencão de financiamentos de instituigöes nacionais e internacionais; dar apoio à promofão de empresas brasileiras vinculadas ao setor, em suas acôes ou na formulafão de propostas de fornecimento de bens ou servicos ao exterior.

0 Plano 2010 não se esgota na sua edigão, mas representa o início de 1 mm processo que orientará estrategicamente as acöes do Setor Elétrico. de forma ao mesmo tempo segura, abrangente eflexivel, mantendo sua validade diante das dificuldades executivas conjunturais. Assim, o programa de obras nele apresentado deverá ser sempre revisado e atualizado em funcão de alteracôes da tendência de mercado ou dos custos considerados, bem como de contingências financeiras, ambientais, políticas e institucionais.

As recomendafóes do plano 2010, traduzidas em programas e projetos, orientará a elaboracảo de documentos de planejamento de curto e médio prazos (PRS e ciclo do GCPS). Paralelamente, o acompanhamento das recomendarôes do plano exigirár além do reforgo das sistemáticas já consagradas, o inicio, na Eletrobrás, de uma atividade permanente de avaliacão do planejamento a longo prazo, especialmente no que se refere aos cenários econômicos, sociais, energéticos, tecnológicos e ambientais.

A seguir serão apresentadas as recomendacöes de caráter geral do Plano. observe-se que existem outras de carater menos abrangente, que não serão aqui tratadas e que constam do texto do plano.

10.1 Abordagem integrada dos estudos energéticos

A energia elétrica deve ser estudada em conjunto com outras fontes, de forma a maximizar os beneficios de um planejamento adequado ao quadro de recursos e às caracteristicas sócio-econômicas do País.

A Comissão Nacional de Energia - da qual, sob a coordenagão do Ministerio das Minas e Energia, participam os setores produtores e
 diretrizes para os estudos a longo prazo eo planejamento do Setor Elétrico se orientara no sentido dessa integragáo. Ressalta-se a existência, já en execucão, de projeto destinado à formulăão destas diretrizes.

Pelos inúmeros aspectos econômicos, técnicos, políticos e ambientais da questão energética, o Setor se empenhará na implantafão, em conjunto con a universidade e com outras estatais da área energética, do Instituto de Economia e Energia, entidade destinada a promover estudos sobre o interrelacionamento destes aspectos. Esse Instituto promovera ademais um melhor conhecimento por parte da comunidade academica e cientifica de aspectos da questão energética, hoje ainda restritos as entidades setoriais.

10.2 Conservacão de energia

As projecóes de mercado constantes do Plano pressupöem a ocorrencia de uma forte conservacão da energia, em grande parte resultado do programa de Conservarão de Energia Elétrica-Procel, do MME e MIC, que vem sendo executado com o concurso de várias entidades públicas e privadas.

É essencial, portanto, que, nos próximos anos, o procel tenha o apoio necessário à efetivafäo das metas de conservąão. Falhar nesta área significara comprometer o atendimento do mercado ou aumentar os investimentos do Setor Elétrico.

10.3 Inserfão regional dos empreendimentos

De acordo com o estabelecido no Plano Diretor de Meio Ambiente, instrumento associado ao Plano 2010 e balizador da atuaça do Setor nesse campo, os empreendimentos do Setor Elétrico buscarão a melhor forma de sua inserfấo regional, atendendo não só a prioridade de geracáo de energia elétrica, cono tambén a de ensejar melhorias na área econômica esocial a nivel local, sempre que conveniente, com o uso múltiplo de recursos. Essa abordagem contribuirá para a melhor compatibilizacão entre os objetivos do Setor e da sociedade. Sua efetividade depende, entretanto, de um progresso nas articulacöes intersetoriais e no planejamento regional.

Nesse sentido é importante a criaøão, dentro do Setor Elétrico, a curtissimo prazo, de um comitê de meio ambiente, que sirva de fórum de debates e de troca de experiências sobre as questóes de insercão regional e ambientais, facilitando o planejamento e a coordenafão das aföes das concessionairias neste campo.

10.40 programa hidrelétrico e a questão do meio ambiente

No horizonte do Plano 2010 será desenvolvida a quase totalidade do potencial hidrelétrico competitivo de todas as regióes brasileiras, com excegão da região Norte, que poderá ainda contribuir apreciavelmente com novos empreendimentos por 5 a 8 anos.

- programa hidrelétrico, que permitirá que a hidreletricidade continue responsável por cerca de 90% da geracão de energia elétrica até o ano 2010, se caracterizara pela grande quantidade de usinas de médio porte (até 300 MW), prevendo-se que cerca de 80 novas usinas estejam iniciando sua operagão até o ano 2000. Esse programa justifica-se nảo só pelos menores custos das hidrelétricas, mas também pelos seus aspectos favoraveis do ponto de vista ambiental.

Essa quantidade de usinas, conjungada a utilizacão, antes do inicio da década de 2001 a 2010, de energia oriunda da região amazônica, criará necessidade de um aprofundamento de pesquisas e agóes na área de meio ambiente, relacionamento com comunidades indígenas e ribeirinhas.

A opinião pública deveráser esclarecida das vantagens e limitacöes da solucão hidrelétricas vis-a-vis às demais opgões. Os empreendimentos de maior porte serão analisados em processos que contemplarâo audiências públicas.

Os projetos de novas hidrelétricas deverão passar por uma analise detida na Sema, Conama e órgãos ambientais estaduais. os Rimas (Relatório sobre Impacto do Meio Ambiente) instruirão os processos de licenciamento.

10.5 A transmissão a longa distância

Constitui grande desafio para a engenharia e para a industria nacional capacitarem-se tecnologicamente para atender de modo pleno as necessidades das interligacöes Norte-Nordeste e Norte-Sudeste, vencendo distâncias entre $2000 \in 3000 \mathrm{~km}$.

Este processo de capacitafão tecnológica devera envolver a participacão de varios agentes, tais como: concessionairias, centros de pesquisas, universidades, consultoras, fabricantes de equipamentose materiais, etc.

Entre outras atividades, prevê-se aprofundamentos mos estudos já iniciados sobre a avaliacão das alternativas passiveis de serem utilizadas nesta interligaqão, eo estabelecimento de programas de pesquisa e desenvolvimento, incluindo a montagem de projetos-piloto com vista ao desenvolvimento e aperfeicoamento de equipamentos, componentes e acessórios.

10.60 programa termelétrico

O esgotamento do potencial hidrelétrico competitivo, previsto para a década 2011/2020, exigiu o estabelecimento de um programa térmico mínimo como meio de viabilizar o desenvolvimento da capacitacão tecnológica nacional em projeto, fabricafão e construcão de usinas termelétricas, ao mesmo tempo que garante uma transifão suave entre um programa predominantemente hidrelétrico e um predominantemente termelétrico.

0 programa térmico a carvão do Plano zosoprevé mais 4 usinas de potencia 50 MW (2 possivelmente para combustão em leito fluidizado), 2 de $125 \mathrm{MW}, 9$ de $315 \mathrm{MW} \in 3 \mathrm{de} 540 \mathrm{MW}$. No tocante ao programa nuclear, seu desenvolvimento se balizará pelos resultados da comissâo de Avaliagáo do Programa Nuclear. Estima-se que 4 novas usinas poderấo estar disponiveis na década 2001/20i0.

10.7 Capacitacão industrial

A indístria nacional jáse mostra apta ao fornecimento da quase totalidade dos equipamentos necessários a expansão do Setor, nâo se visualizando maiores problemas no horizonte do Plano 20io.

O aumento dos indices de nacionaliagäo devera ser facilitado pela expansấo do mercado para equipamentos e materiais, o que aumentará ainda a competitividade da industria nacional no exterior . No tocante a parte termelétrica, deverá ser expandida a capacidade de fabricafáo de componentes de porte mais elevado (caldeiras, turbinas e geradores), bem como promovido o domíniotecnológico das fases de projetos fabricagäo e montagem de usinas termicas a carvão e mucleares.

Sera importante um maior apoio por parte de financiadores como BNDES e Finame as empresas nacionaisy para que possam competir com as internacionais, em geral amparadas por créditos beneficiados.

Pelo porte das obras, o risco de uma desnacionalizafáo desse setor, c.aso aberto para concorréncias internacionais (o que é mandatório no caso de financiamentos de BID e BIRD), é grande. Entretanto, face à experiencia adquirida por empresas brasileiras no exterior e desde que o Setor adote as medidas corretas nos editais de concorrencia, serão criadas as condicöes para que as empresas brasileiras assegurem para si uma posigão preponderante nesse mercado.

10.8 Pesquisa e desenvolvimento

Apesar de não serem conhecidos comprecisâo, os dispendios em pesquisa e desenvolvimento hoje realizados em energia elétrica, quando comparados ao total do investimento do Setor Eletrico, são considerados insuficientes para fazer face as novas exigencias do Plano. Neste sentido, espera-se atingir, nos próximos anos, os seguintes objetivos:
.- segmentar nos orcamentos das diferentes entidades envolvidas com energia elétrica as parcelas atribuiveis a pesquisa e desenvolvimentog

- elevar o total desses dispendios a um valor da ordem de 3% do investimento global do Setor Elétrico.

Estes novos recursos se destinaráo não só a reforøar as áreas que já atingiram um razoável grau de desenvolvimento (planejamento e operacafo de sistemas elétricos, automačóo e instrumentagáo, hidreletricidade, etc. .) como também áreas ainda incipientes e que deveräo, em fungäo das proposifóes do plano 2010, expandir-se fortemente nos próximos anos, entre as quais pode-se witara
… transmissão a longa distânciay

- termeletricidadey
- conservagão de energia elétrica;
- meio ambiente.

10.9 Expansão do atendimento social

Os programas de expansão incluidos no horizonte do plano $20 \leq 0$ promoverão investimentos mais equilibrados no tocante a geracâoltransmissãol distribuicão. Além da melhoria da qualidade do servico prestado, sera expandido o atendimento urbano (periferias de grandes cidadese localidades isoladas) erural, ambos de imperiosa prioridade.

Diagnósticos globais sobre a situagáo da eletrificação rural ou distribuicão urbana foram, ou estão sendo, realizados com apoio de em… préstimos do Banco Mundial.

Programa de financiamento, com eventual participagão de organismos internacionais, serâo dirigidos no sentido de viabilizar o acesso à energia eletrica dos contingentes populacionais ainda náo atendidos, contribuindo para diminuir distorcóes entre regióes, embora a grande defasagem econőmica entre as mesmas náo permita ainda se esperar uma situagão equalizada até o horizonte deste Plano.

10.10 Treinamento e capacitagão de recursos humanos

Independente das áreas já desenvolvidas de treinamento em planejamento e operafão dos sistemas elétricos (sistemas de potencia, distribuigão e eletrificacão rural) e gestáo administrativa, as seguintes áreas serâo objeto de programas de treinamento, em colaboracáo com universidades e centros de pesquisa:

- meio ambientes (aspectos fisicos, sociais, antropológicos e culturais);
- economia e energia (investigagão das relacóes entre economia, energia, energia elétrica e desenvolvimentoly
-- termeletricidade (análise de sistemas de geragão isolados e interligados, equipamentos convencionais e nucleares, uso em complementaçáo térmica, controle de emissôes, etc.).

Um importante aspecto desse programa é a sua regionalizacão, cabendo mencionar o apoio a ser assegurado, na região Norte, aos programas de formacióo de pessoal de nível médio, superior e pós-graduado, promovidos pela Eletronorte.
10.11 Estudos institucionais

0 Setor estara realizando, de julho de 1987 a dezembro de 1988, um trabalho de revisão do
seu modelo institucional, objetivando:

- adequar o modelo setorial às necessidades decorrentes dos cenarios de expansão caracterizados no Plano 2010;
- corrigir as atuais disfuncöes, em particular as referentes aos fluwos financeiros de recursos.

Este trabalho - que está sendo conduzido sob a coordenafáo da Eletrobras, com a participagảo do DNAEE, concessionárias e outras entidades representativas, e que compreenderá também a revisåo da legislaça e do modelo de organizafão do setor - é altamente oportuno. entre outras razóes, pelo fato do prograna de expansão previsto ser substancialmente diferente daquele que vigorou em períodos precedentes, e também porque fatores politicos gerais vêm impondo novos condicionamentos sobre a acão das empresas estatais (abertura de gestão, preocuparão maior con o desempenho, etc.)..

Entuetunto, nä́o há necessidade de aguardar ofinal desses estudos para se iniciar a implantação do programa de expansão e dos demais recomendacôes contidas no Plano 2010, uma vez que os atuais critérios de decisão e relacionamento entre as diversas entidades do Setor Elétrico, mesmo não sendo ideais, permitem a implementafão de seus planos. Será necessário, entretanto, definir claramente os procedimentos que garantam a observância das orientacôes preconizada no Plano 2010.

Mesmo que os estudos referidos venhan a alterar as instituiföes mencionadas, sera preciso preservar os procedimentos que conduzam ao objetivo maior do Plano 2010, que é o de prever solugöes de máximo beneficio e mínimo custo para os consumidores e para o Pais.

10.i2 Viabilidade econômico-financeira

As simulacöes econômico-financeiras realizadas mostram que as perspectivas do quinquenio $1992 / 96$ são satisfatórias, permitindo a realizacão do investimento médio anual previsto de uss 7,5 bilhões, quando no quinquênio anterior será de uss 6,4 bilhöes, havendo mesmo espaco para un eventual aumento deste nivel como conseqijencia de taxas de crescimento maiores da economia, desde que mantida a elasticidaderenda do consumo de eletricidade.

Entretantor para se atingir esta situagão favorável, é absolutamente necessario que sejam seguidas nos próximos anos as reconendacôes do Plano de Recuperacão Setorial, das quais destacam-se as seguintes:

- aumento das tarifas, visando a melhorar as taxas de retorno e promover a racionalização e conservacão no uso da energia elétricay
... capitalizacão do Setor Elétrico en complementacão ao insuficiente autofinanciamento:
- ressarcimento, pelo Governo Federal, dos investimentos realizados nas usinas nueleares de Angra I, II e III, excedentes aos custos da alternativa hidrelétrica deslocada;
- programacão dos investimentos em ritmo compativel con a recuperafão econômico-financeira do Setor;
- aumento da eficiencia e produtividade das concessionárias.

É objetivo fundamental do Setor Elétrico manter as tarifas elétricas brasileiras em niveis internacionalmente competitivos. Face às carac-teristicas do sistema elétrico brasileiro, oprincipal componente dos custos decorre do ativo imobilizado. Deste modo, é necessário um permanente esforco de racionalizacão e reducão nos custos dos empreendimentos, hoje fortemente afetados por aumentos nos custos financeiros decorrentes de dilatacôes nos prazos de execugão das obras.

A recuperacão da capacidade financeira do Setor constitui uma etapa fundamental do processo da diminuicio de seus custos, pois, com uma programacảo financeira adequada, haverá de imediato uma reducão das despesas financeiras e, mesmo, dos custos diretos uma vez que os riscos incorporados aos precos contratuais podem ser reduzidos.

10.13 Programas de expansão

A implementacão das orientacões expressas no plano eoio, no que se refere aos programas de expansão, requererá uma coordenacão de afôes baseadas emprincipios definidos e coerentes que permitam a alocacão de obras às empresas de acordo com os eritérios expostos a seguir.
a) Na fase do estudo de viabilidade, serão considerados os seguintes aspectos:

- a finalidade do empreendimento e sua localizaço geográfica;
- a vocacão histórica da empresa;
- a capacitafão técnica, gerencial efinanceira da empresa, de modo a permitir realizar os empreendimentos aos custos mínimos e nos prazos requeridos;
- a demonstrafão de existencia de mercado para absorver a produgão prevista e de garantia de ocupacão racional do parque de gerafão existente.
b) Para o inicio da construgão, após conclusão
do projeto básico, serão considerados. adicionalmente:
- a definicão de recursos financeiros para a completa execurão do empreendimento nos prazos previstos;
-- o comprometimento de todas as empresas envolvidas com o atendimento do mercado a que o empreendimento se destina, permitindo distribuir de forma equitativa não somente as vantagens visualizadas, cono também os ônus decorrentes de uso de combustiveis ou de ociosidades transitórias no parque
gerador existente.
Providências deverão ser tomadas no sentido de garantir que a expansão dos sistemas se fafa pelo custo mínimo, mediante o estabelecimento de requisitos e critérios básicos a serem adotados no processo decisório. desde os estudos iniciais até a execugão dos novos empreendimentos.

É importante tanbém que venham a ser adotados critérios claros de absorgão parcial dos custos de expansão por outras finalidades a que os empreendimentos se destinem (navegacão, controle de vazöes, irrigacão, absorcão de tecnologia, desenvolvimento regional, etc.), de modo a ñ̃o comprometer a expansã́o pelo custo mínimo. portanto, a introdugão de novas obras não previstas no plano, ou eventuais antecipacóes, sópoderá ser feita se os custos absorvidos pelo Setor Elétrico não forem maiores que os custos marginais dos seus planos de expansão. A observaqão deste princípio permitirá que se possa contemplar, nas futuras revisôes dos programas de expansão, obras de miltiplas finalidades ou de interesse localizado em um determinado estado.

O acompanhamento integrado do programa de expansão, incluindo as diferentes fases de todos os projetos, será estruturado de forma a permitir manter o Governo informado da evoluãáo dos programas que estäo sendo realizados sob sua orientacão, expressa neste plano.

[^0]: (*) A potência programada representa 0 acréscime de potência no periodo 1087/2001.
 Nota: Em função dos estudos a serem realizados em 1988, de acordo com o descrito no item 3.1.1.i, esta tabela poderá vir a ser alterada, pela modificação dos cronogramas das hidrelétricas e pela eventual introduço de termelétrica de 700 MW , em Sao Pailo, a partir de 1992

