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Significance

Tropical deforestation warms the 
climate with negative impacts on 
people living nearby. Most 
previous studies have focused on 
the local warming caused by 
deforestation and less is known 
about how deforestation impacts 
surrounding areas. Our study 
used satellite data to show that 
deforestation in the Amazon 
caused substantial warming up 
to 100 km away from the location 
of forest loss. We show that this 
nonlocal warming increased 
deforestation- induced warming 
by a factor of four. We estimate 
that reducing deforestation in 
the Brazilian Amazon could 
reduce future warming in the 
southern Amazon by 0.56 °C. 
These findings highlight the role 
of deforestation in regional 
climate change and emphasize 
the importance of reducing 
deforestation for climate 
adaptation and resilience in the 
Amazon.
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Tropical deforestation impacts the climate through complex land–atmosphere interac-
tions causing local and regional warming. However, whilst the impacts of deforestation 
on local temperature are well understood, the regional (nonlocal) response is poorly 
quantified. Here, we used remote- sensed observations of forest loss and dry season land–
surface temperature during the period 2001 to 2020 to demonstrate that deforestation 
of the Amazon caused strong warming at distances up to 100 km away from the forest 
loss. We apply a machine learning approach to show nonlocal warming due to forest 
loss at 2–100 km length scales increases the warming due to deforestation by more 
than a factor 4, from 0.16 K to 0.71 K for each 10- percentage points of forest loss. 
We estimate that rapid future deforestation under a strong inequality scenario could 
cause dry season warming of 0.96 K across Mato Grosso state in southern Brazil over 
the period 2020 to 2050. Reducing deforestation could reduce future warming caused 
by forest loss to 0.4 K. Our results demonstrate the contribution of tropical deforesta-
tion to regional climate warming and the potential for reduced deforestation to deliver 
regional climate adaptation and resilience with important implications for sustainable 
management of the Amazon.

deforestation | temperature | climate

Biophysical effects of forests can strongly impact properties of the land surface through 
changes in land–atmosphere fluxes of heat, moisture, and momentum (1–3). Forest land-
scapes typically exhibit higher leaf area index, deeper roots, lower albedo, greater evapo-
transpiration, and aerodynamic surface roughness compared to nonforest landscapes (1).

Changes to these biophysical effects as a result of deforestation cause changes in climate 
at the location of land cover change, known as local effects (4). Deforestation has con-
trasting local effects, with increased albedo acting to cool the surface whilst reduced surface 
roughness and evapotranspiration, acting to warm the surface (5). Numerous studies have 
shown that the combined impact of these contrasting effects is local warming with tropical 
deforestation increasing local daytime surface temperature by 1–2 °C or more (6–14). 
Deforested areas in the Amazon were found to have warmed by as much as 3 °C locally, 
with the largest warming during the dry season (15, 16). The local warming impacts of 
deforestation are well recognized by people living within tropical forest landscapes (17).

Deforestation can also impact the climate of nearby areas that are 10 s or 100 s of km 
from the location of land- use change (3). Much less is known about these nonlocal climate 
impacts of deforestation, which are more challenging to assess (18). Nonlocal impacts 
which occur via advection, circulation changes, and atmospheric feedbacks depend on 
the geographical distribution and spatial extent of surrounding deforestation, meaning 
that these effects are much more difficult to identify or interpret. Indeed, many observa-
tional assessments of the local impacts of land- use change use a “space- for- time” approach 
that compares the climate over forest and neighboring nonforest that excludes nonlocal 
effects or assumes that they are negligible (4, 19). In contrast, some observational studies 
suggest that nonlocal effects could be substantial. Large (>1,000 km2) deforested patches 
are known to warm more than smaller patches of deforestation (20). Cohn et al. (21) 
found significant and substantial nonlocal warming at undisturbed locations in Brazil’s 
Amazon and Cerrado biomes at distances up to 50 km away from forest loss. In maritime 
Southeast Asia, deforestation has been shown to result in warming up to 6 km away from 
the location of deforestation (22). Climate models have been used to separate the local 
and nonlocal effects of deforestation suggesting that the nonlocal effects of deforestation 
on surface temperature are similar in magnitude to the local effects (4). These studies have 
highlighted a potentially important, but poorly quantified, impact of deforestation on 
regional temperatures. A much better quantification and understanding of these regional 
responses is needed to inform sustainable management of tropical landscapes.

In this study, we examined both local and nonlocal effects due to forest loss across 
the Amazon biome where deforestation is dramatically changing the landscape (23). 
Large- scale deforestation started in the 1970 s, (24) and about 17% of the Amazon 
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had been deforested by 2021, with rates of deforestation accel-
erating in the past few years (25, 26). A business- as- usual sce-
nario of continued deforestation of the Amazon has estimated 
that up to 40% of the basin could be deforested by 2050 (27). 
Given the extent of land cover change across the Amazon, both 
local and nonlocal temperature responses to forest loss may 
represent an important mechanism for shaping local and 
regional climates.

We combined a number of remote- sensed datasets to quantify 
and predict changes in dry season surface temperature due to forest 
cover loss across the Amazon at varying length- scales. A previous 
study (21) assessed how warming in undisturbed areas of Amazon 
forest was impacted by the amount of nonlocal forest loss. Our 
study focuses on areas experiencing forest loss and aims to under-
stand how temperature changes at the local scale depend on the 
extent of both local and nonlocal forest loss. We calculated the 
change in remotely sensed observations of land surface tempera-
ture at n = ~3.7 million locations (each 1 km2 in extent) across 
the Amazon between 2001 and 2020. Using remotely sensed 
observations of forest fraction over the same period, we explored 
how warming from forest loss depended on the extent of both 
local and nonlocal forest loss. We then used a machine learning 
approach to further isolate the local and nonlocal effects of forest 
loss. Finally, we use this model to make the first prediction of how 
the temperature response depends on local and nonlocal forest 
loss across the Amazon.

Results and Discussion

Forest Loss and Surface Temperature Change. Fig.  1 shows 
Amazon forest loss and corresponding dry season (defined as driest 
3 mo per pixel) land surface temperature change (ΔT) over 2001 
to 2020. Forest loss and ΔT show similar spatial patterns, with 
stronger warming over regions of forest loss particularly across 
the “arc of deforestation” along the southern Amazon. Warming 
exceeds 5 K over regions of extensive forest loss, with stronger 
warming over regions with more extensive forest loss (Fig. 1B). 
Across the whole Amazon basin (n = 3.7 million), median and 
mean ΔT were 0.48 and 0.6 K, respectively (Fig. 1B). Across the 
Brazilian Amazon biome, observed median and mean ΔT were 
greater at 0.58 and 0.78 K, respectively (Fig. 1B).

Observed ΔT as a Function of Forest Loss at Local and Regional 
Scales. Fig. 2 shows observed ΔT for varying amounts of local 
and regional forest loss. In locations with little or no forest loss 
(<10 percentage points forest loss), median ΔT is 0.3 K, which 
we consider a background rate. Locations with 10–20% local 
forest loss but little regional forest loss (i.e., <10 percentage points 
forest loss at regional scales from 2 to 100 km), experience median 
warming of 0.6 K, or double the background rate. Locations with 
40–50% local forest but little regional forest loss experience a 
median warming of 1.3 K, more than quadruple the background 
rate. Warming over locations with both local and regional forest 
loss is even greater. Locations with 10–20% local forest loss and 
10–20% regional forest loss at scales of 2–10 km experience a 
warming of 0.9 K, triple the background rate. When both local 
and regional forest loss is 40–50%, median warming is 6 times 
the background rate (1.9 K). When the regional scale of forest 
loss extends to 100 km, warming is 3.5 times (1.1 K) to 14 times 
(4.4 K) greater for 10–20% and 40–50% forest loss, respectively. 
Warming exceeding 4 K that is observed over regions with strong 
local and regional forest loss is at the upper end of that reported 
in previous studies of tropical deforestation (5–13). Dry- season 
warming of 3 K has been reported for regions of large- scale 
deforestation in the southern Amazon (16). Together this suggests 
that large- scale forest loss leads to substantially greater warming.

Machine Learning Prediction. To understand the relative roles 
of local and regional forest loss on ΔT, we developed a range of 
machine learning models including different aspects of local and 
regional forest loss. We employed the XGBoost algorithm, suitable 
for tabular data, using hyperparameters selected via cross- validation. 
Our dataset of ~3.7 million records was split into 95% training 
and 5% testing datasets. Models were trained and tested, including 
simulations with varying degrees of forest loss at different length 
scales. We also included a range of factors that are known to 
influence the temperature response to forest loss, including latitude 
(9), elevation (28), and distance to coast (29). Fig. 3 shows our 
machine learning prediction of ΔT using different local and regional 
forest loss features (Methods). Predictions of ΔT are poor when 
no information on forest loss is included in the model training 
(MAE = 0.52, RMSE = 0.78, r   2 = 0.07) (Fig. 3 A–C). Including 
information on local (0–2 km) forest loss improves the model, 

Fig. 1. Forest loss and surface temperature change during 2001 to 2020. (A) Percentage point loss (%) in forest fraction. (B) Change in surface temperature (ΔT, 
Kelvin) of the driest month. Change in forest fraction and ΔT over 2001 to 2020 is calculated as the difference between the mean of the first 3- y and the last 3- y 
of the study period (i.e., 2001–2003 versus 2018–2020). Data are shown for the Amazon basin with the boundary of the Brazilian Amazon biome also shown.D
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albeit with substantial scatter in predictions (MAE = 0.47, RMSE 
= 0.68, r   2 = 0.43). Including information on regional forest loss 
substantially improves the model with a consistent improvement 
to the model performance when information on regional forest loss 
at scales of 2–100 km is included (Fig. 3 A–C, solid blue line). The 
best prediction is found when the model includes information on 
forest loss out to the 100- km scale (Base model: MAE = 0.31, RMSE 
= 0.45, r   2 = 0.81), resulting in a model that is substantially better 
than the model based on local forest loss only. Adding features can 
artificially improve the model performance. To ensure that this was 
not influencing our analysis, we show that incrementally adding 
dummy forest fraction halos populated with random forest loss 
data did not improve model prediction (Fig. 3 A–C, dashed blue 
line). These results demonstrate that accounting for regional forest 
loss greatly improves ΔT prediction. Overall, our modeling results 
show that good ΔT prediction is only achieved when both local and 
regional (non- local) forest loss at length scales up to 100 km are 
accounted for in model training. Our results suggest that nonlocal 
neighboring forest cover loss is significantly contributing to observed 
temperature responses across the Amazon.

ΔT Prediction as a Function of Forest Loss at Local and Regional 
Scales. Fig.  4 shows predicted ΔT as a function of local and 
nonlocal forest loss. Warming over regions with only local forest 
loss increases from <0.2 K over regions with less than 5% local 
forest loss to 0.7 K when local forest loss reaches 40% (Fig. 4B). 
In regions with both local and regional (2–10 km) forest loss, 
warming increases to 1.6 K when forest loss reaches 40%. When 
the regional extent of forest loss extends further to 100 km, 
warming in areas of 40% forest loss increases to 2.8 K (Fig. 4B). 
For each 10- percentage points of forest loss, warming increases 
by an average of 0.16 K for local forest loss only, to 0.4 K for 
local and regional (2–10 km) forest loss, and to 0.71 K for 
local and regional (2–100 km) forest loss. Our results therefore 
show that regional forest loss at scales up to 100 km increases 

the warming due deforestation by more than a factor of 4. Our 
modeling results provide further evidence that both local and 
nonlocal forest losses are contributing to the climate responses 
observed across the Amazon biome. Importantly, our results 
show that previous estimates may underestimate the warming 
from tropical forest loss (6–10, 15) as they do not fully account 
for the contribution from regional forest loss (Fig. 4B). Many of 
these studies apply a nearest neighbor or difference- in- difference 
approach to separate temperature changes from climate change to 
those from deforestation. However, such approaches may remove 
the regional climate signal from the analysis, implicitly assuming 
that it is a signal of climate variability or change rather than a 
regional response to deforestation as we show here. Our analysis 
focused on the dry season. Tropical deforestation leads to local 
warming across all seasons (6, 16) and future work is needed 
to assess the nonlocal climate impacts of Amazon deforestation 
outside of the dry season.

Warming Associated with Future Deforestation. The future 
trajectory of deforestation in the Amazon depends on a wide range 
of local, national and global factors. We combined our model with 
two land cover change scenarios for Brazil to explore the impact 
of these different trajectories on regional climate. Both scenarios 
are aligned with the Shared Socioeconomic Pathways (SSPs) 
and Representative Concentration Pathway (RCPs) refined with 
regionally specific information (31). The first scenario represents a 
Strong Inequality scenario (SSP3_RCP7) where the Brazilian Forest 
Code is not respected, protected areas are not safeguarded, and 
there is continued expansion of paved roads which together result 
in rapid continued deforestation. The second scenario represents 
a middle- of- the- road scenario with respect for the Forest Code, 
some additional safeguarding for protected areas and measures 
to reduce negative impacts of road expansion. Widespread forest 
loss is predicted in both scenarios with 762,739 km2 of forest loss 
in the strong inequality scenario and with 673,066 km2 of forest 

Fig. 2. Change in observed dry season surface temperature (ΔT, Kelvin) as a function of forest loss at different length scales. ΔT is shown from left to right: 
Local (0–2 km) forest loss only (i.e., less <10% forest loss at regional scales from 2 to 100 km), local plus regional forest loss at 2–10 km (i.e., less <10% forest 
loss at regional scales from 10 to 100 km), and local plus regional forest loss at 2–100 km. Labeled central values are the median of the distribution. Figure is 
restricted to displaying forest loss <50%.
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loss in the middle- of- the- road scenario (SI Appendix, Figs. S1 and 
S2). Across the Brazilian Amazon biome, we estimate this forest 
loss will cause a median (mean) surface warming of between 0.62 
K (0.63 K) under the middle- of- the- road scenario and 0.73 K 
(0.79 K) under the strong inequality scenario (Fig. 4C). In the 
southern Amazon, rapid forest loss over the period 2000–2020 
resulted in strong warming (Fig. 1D). Stronger future warming is 
also simulated across the southern Amazon where projected forest 
loss is greatest (SI Appendix, Figs. S1D and S2D). In Rondônia, 
predicted median (mean) surface warming increases from 0.59 K 
(0.75 K) under the middle- of- the- road scenario to 0.82 K (0.95 
K) under the strong inequality scenario. In Mato Grosso, predicted 
warming increases from 0.4 K (0.56 K) under the middle- of- the- 
road scenario to 0.96 K (1 K) under the strong inequality scenario 
(Fig. 4D). This reduced warming in the southern Amazon in the 
middle- of- the- road scenario is due to lower deforestation rates in 
this region, which are up for factor of two slower compared to the 
strong inequality scenario. Our analysis isolates warming due to 
forest loss and does not include changes due to global warming. 
Potential positive feedbacks and tipping points in the system (32) 
will not be captured in our approach so future warming may be 

stronger than estimated here. Our analysis is restricted to the 
impacts of deforestation in the Amazon. Further work is needed 
to explore the nonlocal climate impacts of deforestation in other 
tropical forest regions.

Implications. The regional warming due to Amazon deforestation will 
have negative consequences for the 30 million people living within 
the Amazon basin, many of whom are already exposed to dangerous 
levels of heat (33). Previous studies have suggested that the combined 
impacts of future climate change and deforestation could expose an 
additional 11 million people across the Amazon to extreme heat stress 
(34). Increased temperatures will reduce human productivity (35) 
and increase all- cause human mortality (36) for already marginalized 
communities. Increased temperatures will also impact livestock 
and reduce crop yields (37), exacerbated by deforestation- induced 
reductions in rainfall (38, 39). Increased regional temperatures caused 
by deforestation will also impact carbon storage of remaining forest 
(40–42) and increase the risk of fire, with the resultant haze having 
further consequences for human health (43).

In 2020, Amazon deforestation was at the highest rate in the last 
decade (44) with consequent loss of biodiversity and substantial 

Fig. 3. Prediction of surface temperature change due to forest loss. (A) Mean absolute error, (B) RMSE, (C) coefficient of determination. Model prediction metrics 
on the test dataset (n = 184,582). Simulations include no information on forest fraction loss (Non- FF), local forest loss (Δ0–2 km) only, local forest loss and 
information of regional forest loss at scales of 2 to 100 km added to the model incrementally (solid blue line). The blue dashed line represents adding dummy 
halo features incrementally populated with random values between 0 and 1. (D) Model prediction of ΔT with local and all regional forest loss features (2–100 
km) included compared to observations from the test dataset.
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carbon emissions (45). Our analysis shows that controlling future 
deforestation in the Amazon would reduce future warming particu-
larly for the southern states of Rondônia and Mato Grosso, with 
important social and economic benefits across the region. Forest deg-
radation, where forests have been selectively logged or experienced 
fire, impacts large areas of the Amazon (46) contributing substantially 
to carbon emissions (47, 48). Evapotranspiration in degraded forests 
can be up to 34% lower compared to intact forests (49) with likely 
consequences for regional climate. Recovery of secondary and 
degraded forests can act as a carbon sink (50) and may offer additional 
local and regional cooling through biophysical effects. Future work is 
needed to analyze the regional climate impacts of forest degradation 
and regrowth of secondary and degraded forests (51). Identifying 
options for sustainable development of the Amazon without major 
future deforestation or degradation is crucial (52) to supporting cli-
mate adaptation and resilience of the region.

Our analysis does not provide information on the mechanisms 
for regional warming. Tropical deforestation leads to local warm-
ing due to reductions in the turbulent energy flux caused by 
reduced evapotranspiration and reduced surface roughness out-
weighing the cooling effects of increased surface albedo (12). These 

local climate changes will generate thermal, moisture, and surface 
pressure gradients that will alter the lateral movement of heat and 
moisture (3). Changes in circulation driven by deforestation will 
transport warmer air from surrounding regions of deforestation 
(53, 54) and may alter cloud cover (55) with further impacts on 
temperature. In a similar way, the urban heat island effect has 
shown to extend into surrounding rural areas (56, 57). Climate 
model simulations confirm that tropical deforestation leads to 
local warming (2, 13), although models disagree as to the relative 
contribution of changes in evapotranspiration, turbulent heat 
fluxes, and albedo to the surface temperature change (58, 59). 
Climate model studies separating local and nonlocal effects of 
deforestation show that nonlocal effects become comparable to 
local effects only under extensive land cover change (4), as is now 
the case in the southern Amazon. However, coarse resolution 
global climate models simulations (58) with resolutions of 0.7°–
2.8°, equivalent to 70–280 km in the tropics, are unable to sepa-
rate the local and nonlocal responses of deforestation that occur 
at the 10 to 100 km scale. Higher- resolution simulations show 
how Amazon deforestation can initiate mesoscale circulations (54) 
contributing to nonlocal effects. Convection- permitting regional 

Fig. 4. Model simulated surface temperature change (ΔT) due to forest loss. (A) Model predicted ΔT from 693 simulations covering the full range of local and 
regional forest loss. Median predicted values are calculated using dataset average values for latitude, elevation, and distance to coast. (B) Model predicted 
ΔT as a function of increasing local only (blue) and local plus regional (orange and red) forest loss. Observed ΔT as a function of increasing tropical forest loss 
are from three different observational studies (6, 15, 30). (C) Observed (2000 to 2020) and model predicted (2020 to 2050) ΔT for the Brazilian Amazon biome. 
Predicted ΔT for future land cover change under a middle- of- the- road scenario (SSP2_RCP45) and a strong Inequality scenario (SSP1_RCP70). Median ΔT values 
are provided on each boxplot. (D) Observed (2000 to 2020) and model predicted (2020 to 2050) ΔT for two Brazilian states located in the southern Brazilian 
Amazon biome: Rondônia (blue polygon) and Mato Grosso (red polygon).
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climate models simulating the impacts of deforestation at a reso-
lution of 4 km are now available (60, 61) providing new oppor-
tunities to understand the key processes driving the observed 
temperature response at these scales.

Our work quantifies the nonlocal (regional) impacts of deforest-
ation on land surface temperature across the Amazon. We show that 
regional forest loss increases warming by more than a factor of 4 
with serious consequences for the remaining Amazon forest and the 
people living there. We estimate that efforts to reduce deforestation 
could reduce the future warming experienced over the southern 
Amazon by 0.56 K over the next 30 y. Such findings demonstrate 
the contribution of tropical deforestation to regional climate warm-
ing and the urgent need for reduced deforestation and forest con-
servation to deliver regional climate resilience with important 
implications for sustainable management of the Amazon.

Methods

Land Cover Classification Data. Land cover data from the MapBiomas project 
(62) was used, which provides annual land cover classification at 30- m resolution 
for the period 1985 to 2020. We used data for the year 2020.

Rainfall Data. We used precipitation data from Climate Hazards Group InfraRed 
Precipitation with Stations (CHIRPS) version 2.0 (63). The CHIRPS dataset is a 
blended rainfall product combining 5- y precipitation climatology, satellite 
observations, model simulations, and in situ observations from gage stations. 
Quasiglobal gridded products are available from 1981 to near- present at 0.05° 
spatial resolution (approx. 5 km at the equator) (63). We used monthly data 
spanning the period 1 January 2001 to 31 December 2020.

Elevation Data. We used elevation data taken from Global Multi- resolution 
Terrain Elevation Data (GMTED2010) (64) at 7.5- arc- second spatial resolution.

Distance to Coast Data. We used data on distance to the nearest coast from 
https://oceancolor.gsfc.nasa.gov/resources/docs/distfromcoast/.

Land Surface Temperature Data. We used land surface temperature (LST) 
data from MOD11A2 version 6 MODIS 8- d LST data at 0.01- degree resolution 
grid downloaded from https://www.earthdata.nasa.gov/ (variable name: LST_
Day_1km). Following Li et al. (9), we excluded data where the estimated emissivity 
error was greater than 0.02 and where the LST error was greater than 1 K. Extensive 
cloud cover can reduce the spatial and temporal availability of satellite data. For 
this reason, we focus our analysis on the dry season when there is less cloud cover. 
To obtain monthly data, we aggregated by month ignoring any 8- day period 
where data were missing due to clouds or as a result of the quality screening 
process. Although Terra’s 10:30 AM local overpass time usually senses a cooler 
surface than Aqua with its 1:30 PM overpass, we opted to use Terra for its longer 
sampling period and due to lower cloud cover in the morning.

For each pixel, we analyzed LST data for the driest month identified using 
CHIPRS monthly rainfall data (SI Appendix, Fig. S3). Dry season surface temper-
ature change (ΔT) was then calculated by subtracting the average surface tem-
perature of the driest month for two periods at the end (2018 to 2020) and start 
(2001 to 2003) of the study period. Using 3- y averages reduces the influences of 
climate variability. As a final preprocessing step, we used land cover classifications 
in the year 2020 to remove data points that contained ≥5% fraction of water, 
urban, flooded forest, and wetlands in both start and end periods. In addition, we 
excluded pixels at elevations above 500 m to avoid significant effects of elevation 
on ΔT. Our final ΔT dataset comprised n = ~3.7 million pixels (1 km2 in extent) 
over the Amazon biome region.

Forest Fraction Data. Forest fraction data were taken from Global Forest 
Change (Source: Hansen/UMD/Google/USGS/NASA) (23) V1.8. Annual forest 
fraction for the period 2000 to 2020 was calculated by taking tree cover in 
the year 2000, defined as canopy closure for all vegetation taller than 5 m in 
height encoded as a percentage per output grid cell units ranging 0–100 and 
subjecting it to annual forest loss, defined as a disturbance from a forest to non-
forest state. Forest loss from this product has user’s and producer’s accuracies of 
greater than 80%. Our analysis does not fully represent forest degradation or 

secondary forest regrowth. Average forest fraction change was calculated as the 
difference between average forest fraction for two periods at the start (2001 to 
2003) and end of the study period (2018 to 2020). We calculated both local and 
nonlocal regional forest cover change at different length scales of ΔT locations. 
Local forest cover change included forest loss at distances of 0–2 km, while 
regional forest cover change was calculated in “halos” located 2–5 km, 5–10 km, 
10–25 km, 25–50 km, and 50–100 km of ΔT locations (SI Appendix, Fig. S4). 
Halo analysis was conducted in Python version 3.9.7 using the Geopandas 
package version 0.10.2.

Large forest losses occur not only at local scales (0–2 km), but also at nonlocal 
regional length scales 2–10 km and 10–100 km from of ΔT locations. We find a 
2- percentage point change in median forest cover between start (99%) and end (97%) 
forest fraction period at local scales (0–2 km) of ΔT locations (SI Appendix, Fig. S5). For 
nonlocal regional distances 2–10 km of ΔT locations, we find a 5- percentage point 
change in median forest cover between start (96.5%) and end (91.5%) periods, while 
we find a 7- percentage point change at regional distances 10–100 km of ΔT locations 
between start (92%) and end (85%) periods (SI Appendix, Fig. S5).

Supervised Machine Learning. We used a supervised machine learning (ML) 
model to predict ΔT. All data was regridded to 0.01° resolution. Table 1 provides 
details of the features used in the model including ΔT, local and regional forest 
cover at the start and end of the analysis period, latitude, elevation above sea 
level, and distance to the nearest coast. We used a gradient- boosting decision 
tree algorithm (XGBoost) (65) as our model of choice, well suited to the regression 
problem with tabular data. Briefly, the XGBoost algorithm adds decision tree 
models to an ensemble that are fit to correct errors made by prior decision tree 
models. Models are fit using a loss function and gradient descent optimization 
algorithm whereby the loss gradient is minimized as the model is fitted to training 
data (gradient boosting). The algorithm is computationally efficient and highly 
effective, as well as being found to dominate regression problems using tabular 
datasets on the Kaggle competitive data science platform (65).

XGBoost hyperparameters were selected based on a fivefold cross validation 
grid- search approach, in addition to a manual trial and error approach (see pro-
vided Jupyter notebook python code for hyperparameters used). The dataset com-
prising ~3.7 million records was randomly split into training and test datasets, 
comprising ~3.5 million training (95%) and ~0.2 million testing (5%) records, 
with almost identical target (ΔT) distributions (SI Appendix, Fig. S6). Models were 
then trained on the training dataset and tested on the test dataset.

We conducted a number of model simulations using the XGBoost algorithm 
(Fig. 3). The Non- FF simulation used nonforest fraction features only (latitude, 
elevation, and distance to the nearest coastline), which was found to be a poor 
model (Fig. 3). In order to understand the sensitivity of temperature response to 
forest loss at difference length scales, we developed a range of models including 
both local and regional forest loss over progressively larger distances from 0 to 
100 km. Including both local and regional forest loss substantially improved 
model performance (Fig. 3). Adding forest fraction loss features may artificially 
improve model performance, so we repeated the same sensitivity, but instead 
substituting forest fraction loss data with random data ranging 0 to 1, which was 
found not to improve model prediction. Our best model used all available features 
including information on forest fraction loss at both local scales of 0 to 2 km and 
out to regional scales of 2 to 100 km (Fig. 3).

We found that there is some collinearity between forest fraction loss features 
(SI Appendix, Fig. S7), which is a problem in that it undermines the statistical 
significance of independence among model features. We tested two additional 
models whereby the six forest fraction loss features (Table 1) were replaced by 
exact copies of either the local forest loss feature (0–2 km) or by the outermost 
regional forest loss feature (50–100 km). Our reasoning was such that if collin-
earity was important, using multiple copies of either forest loss feature would 
produce a model that was just a good as the best model using the correct forest 
fraction loss data. However, we found that these two models were inferior when 
predicting subsets of the test dataset focusing on data points experiencing dif-
ferent levels of local and regional loss (SI Appendix, Fig. S8). These results sug-
gest that these collinearities are not important because good model prediction 
requires information on both local and regional forest loss.

Finally, we deployed a linear least squares regression model to compare 
the results from the XGBoost algorithm under the best simulation using all 
available features. We found that using a linear model resulted in poor model D
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prediction (SI Appendix, Fig. S9) justifying the supervised machine learning 
algorithm used here.

We used the model combined with observed forest loss to simulate the 2000–
2020 warming across the Amazon. We did this separately for locations where we 
had observations of as well as across the whole Brazilian Amazon Biome. We found 
median (mean) warming of 0.58 K (0.78 K) over locations with observations and 
0.47 K (0.63 K) over the whole biome.

Forest Cover Change Scenarios in 2050. We use a new set of land cover change 
scenarios for the Brazilian Amazon biome to 2050 (31) to predict future forest loss 
across the region. The scenarios are aligned with SSPs and RCPs and consider a 
balance between global forest loss drivers (such as GDP growth, population growth, 
per capita consumption of agricultural products, international trade policies, and 
climatic conditions) and local factors driving deforestation (such as land use, agrar-
ian structure, agricultural suitability, protected areas, distance to roads, and infra-
structure projects) (31). We consider two scenarios: a middle- of- the- road narrative 
(SSP2_RCP4.5) and a strong inequality scenario (SSP3_RCP7.0). Both scenarios 
exhibit considerable forest cover loss by 2050 with greater wide- spread forest loss 
in SSP3_RCP7.0 (SI Appendix, Figs. S1 and S2). Data for each scenario is provided 

on a 10 x 10 km grid in NetCDF format (https://zenodo.org/record/5123560#.
Y9zmhT3P2Ls) at 5- y increments from 2015 to 2050. We regridded the data 
by assigning the same forest fraction value from the native resolution within a 
0.01- degree resolution grid (approx. 1 km at the equator) for each scenario to obtain 
forest loss to 2050. Finally, we estimate warming associated with each scenario 
across the whole Brazilian Amazon Biome between 2020 and 2050.

Data, Materials, and Software Availability. Data and code that support the 
findings of this study are available at http://archive.researchdata.leeds.ac.uk/id/
eprint/1085 (66). Dataset and code data have been deposited in Amazon deforest-
ation causes strong regional warming (http://archive.researchdata.leeds.ac.uk/
id/eprint/1085) (66).
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